本文整理匯總了Python中pandas.rolling_std方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.rolling_std方法的具體用法?Python pandas.rolling_std怎麽用?Python pandas.rolling_std使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.rolling_std方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getVol
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def getVol(ret):
'''
calculate volatility value of log return ratio
:param DataFrame ret: return value
:param int interval: interval over which volatility is calculated
:return: DataFrame standard_error: volatility value
'''
print '''*************************************************************************************
a kind WARNING from the programmer(not the evil interpreter) function getVol:
we have different values for interval in test code and real code,because the sample file
may not have sufficient rows for real interval,leading to empty matrix.So be careful of
the value you choose
**************************************************************************************
'''
# real value
# interval = 26
# test value
interval = 4
standard_error = pd.rolling_std(ret, interval)
standard_error.dropna(inplace=True)
standard_error.index = range(standard_error.shape[0])
return standard_error
示例2: sample_531_1
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def sample_531_1():
"""
5.3.1_1 繪製股票的收益,及收益波動情況 demo list
:return:
"""
# 示例序列
demo_list = np.array([2, 4, 16, 20])
# 以三天為周期計算波動
demo_window = 3
# pd.rolling_std * np.sqrt
print('pd.rolling_std(demo_list, window=demo_window, center=False) * np.sqrt(demo_window):\n',
pd_rolling_std(demo_list, window=demo_window, center=False) * np.sqrt(demo_window))
print('pd.Series([2, 4, 16]).std() * np.sqrt(demo_window):', pd.Series([2, 4, 16]).std() * np.sqrt(demo_window))
print('pd.Series([4, 16, 20]).std() * np.sqrt(demo_window):', pd.Series([4, 16, 20]).std() * np.sqrt(demo_window))
print('np.sqrt(pd.Series([2, 4, 16]).var() * demo_window):', np.sqrt(pd.Series([2, 4, 16]).var() * demo_window))
示例3: results
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def results(self, data_frame):
y_value = data_frame[self.y_data]
x_value = data_frame[self.x_data]
if self.lookback >= len(x_value):
return ([self.value, self.hedge_ratio, self.spread, self.zscore], \
[pd.Series(np.nan), pd.Series(np.nan), pd.Series(np.nan), pd.Series(np.nan)])
ols_result = pd.ols(y=y_value, x=x_value, window=self.lookback)
hedge_ratio = ols_result.beta['x']
spread = y_value - hedge_ratio * x_value
data_frame[self.value] = ols_result.resid
data_frame[self.hedge_ratio] = hedge_ratio
data_frame[self.spread] = spread
data_frame[self.zscore] = (spread - \
pd.rolling_mean(spread, self.lookback)) / \
pd.rolling_std(spread, self.lookback)
示例4: volatility
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def volatility(self, n, freq=None, which='close', ann=True, model='ln', min_periods=1, rolling='simple'):
"""Return the annualized volatility series. N is the number of lookback periods.
:param n: int, number of lookback periods
:param freq: resample frequency or None
:param which: price series to use
:param ann: If True then annualize
:param model: {'ln', 'pct', 'bbg'}
ln - use logarithmic price changes
pct - use pct price changes
bbg - use logarithmic price changes but Bloomberg uses actual business days
:param rolling:{'simple', 'exp'}, if exp, use ewmstd. if simple, use rolling_std
:return:
"""
if model not in ('bbg', 'ln', 'pct'):
raise ValueError('model must be one of (bbg, ln, pct), not %s' % model)
if rolling not in ('simple', 'exp'):
raise ValueError('rolling must be one of (simple, exp), not %s' % rolling)
px = self.frame[which]
px = px if not freq else px.resample(freq, how='last')
if model == 'bbg' and periods_in_year(px) == 252:
# Bloomberg uses business days, so need to convert and reindex
orig = px.index
px = px.resample('B').ffill()
chg = np.log(px / px.shift(1))
chg[chg.index - orig] = np.nan
if rolling == 'simple':
vol = pd.rolling_std(chg, n, min_periods=min_periods).reindex(orig)
else:
vol = pd.ewmstd(chg, span=n, min_periods=n)
return vol if not ann else vol * np.sqrt(260)
else:
chg = px.pct_change() if model == 'pct' else np.log(px / px.shift(1))
if rolling == 'simple':
vol = pd.rolling_std(chg, n, min_periods=min_periods)
else:
vol = pd.ewmstd(chg, span=n, min_periods=n)
return vol if not ann else vol * np.sqrt(periods_in_year(vol))
示例5: rolling_std
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def rolling_std(self, n):
return pd.rolling_std(self.rets, n)
示例6: rolling_std_ann
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def rolling_std_ann(self, n):
return self.rolling_std(n) * np.sqrt(self.pds_per_year)
示例7: rolling_std
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def rolling_std(x, window, min_periods=None, center=False, ddof=1):
if PD_VERSION >= '0.18.0':
return x.rolling(
window, min_periods=min_periods, center=center
).std(ddof=ddof)
else:
return pd.rolling_std(
x, window, min_periods=min_periods, center=center, ddof=ddof
)
示例8: run
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def run(self, data, symbols, lookback, **kwargs):
prices = data['prices'].copy()
rolling_std = pd.rolling_std(prices, lookback)
rolling_mean = pd.rolling_mean(prices, lookback)
bollinger_values = (prices - rolling_mean) / (rolling_std)
for s_key in symbols:
prices[s_key] = prices[s_key].fillna(method='ffill')
prices[s_key] = prices[s_key].fillna(method='bfill')
prices[s_key] = prices[s_key].fillna(1.0)
return bollinger_values
示例9: explain_anomalies_rolling_std
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def explain_anomalies_rolling_std(y, window_size, sigma=1.0):
"""Helps in exploring the anamolies using rolling standard deviation
Args:
y (pandas.Series): independent variable
window_size (int): rolling window size
sigma (int): value for standard deviation
Returns:
a dict (dict of 'standard_deviation': int, 'anomalies_dict': (index: value))
containing information about the points indentified as anomalies
"""
avg = moving_average(y, window_size)
avg_list = avg.tolist()
residual = y - avg
# Calculate the variation in the distribution of the residual
testing_std = pd.rolling_std(residual, window_size)
testing_std_as_df = pd.DataFrame(testing_std)
rolling_std = testing_std_as_df.replace(np.nan,
testing_std_as_df.ix[window_size - 1]).round(3).iloc[:, 0].tolist()
std = np.std(residual)
return {'stationary standard_deviation': round(std, 3),
'anomalies_dict': collections.OrderedDict([(index, y_i)
for index, y_i, avg_i, rs_i in zip(count(),
y, avg_list,
rolling_std)
if (y_i > avg_i + (sigma * rs_i)) | (
y_i < avg_i - (sigma * rs_i))])}
# This function is repsonsible for displaying how the function performs on the given dataset.
示例10: generate_features
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import rolling_std [as 別名]
def generate_features(df):
""" Generate features for a stock/index based on historical price and performance
Args:
df (dataframe with columns "Open", "Close", "High", "Low", "Volume", "Adjusted Close")
Returns:
dataframe, data set with new features
"""
df_new = pd.DataFrame()
# 6 original features
df_new['open'] = df['Open']
df_new['open_1'] = df['Open'].shift(1)
df_new['close_1'] = df['Close'].shift(1)
df_new['high_1'] = df['High'].shift(1)
df_new['low_1'] = df['Low'].shift(1)
df_new['volume_1'] = df['Volume'].shift(1)
# 31 original features
# average price
df_new['avg_price_5'] = pd.rolling_mean(df['Close'], window=5).shift(1)
df_new['avg_price_30'] = pd.rolling_mean(df['Close'], window=21).shift(1)
df_new['avg_price_365'] = pd.rolling_mean(df['Close'], window=252).shift(1)
df_new['ratio_avg_price_5_30'] = df_new['avg_price_5'] / df_new['avg_price_30']
df_new['ratio_avg_price_5_365'] = df_new['avg_price_5'] / df_new['avg_price_365']
df_new['ratio_avg_price_30_365'] = df_new['avg_price_30'] / df_new['avg_price_365']
# average volume
df_new['avg_volume_5'] = pd.rolling_mean(df['Volume'], window=5).shift(1)
df_new['avg_volume_30'] = pd.rolling_mean(df['Volume'], window=21).shift(1)
df_new['avg_volume_365'] = pd.rolling_mean(df['Volume'], window=252).shift(1)
df_new['ratio_avg_volume_5_30'] = df_new['avg_volume_5'] / df_new['avg_volume_30']
df_new['ratio_avg_volume_5_365'] = df_new['avg_volume_5'] / df_new['avg_volume_365']
df_new['ratio_avg_volume_30_365'] = df_new['avg_volume_30'] / df_new['avg_volume_365']
# standard deviation of prices
df_new['std_price_5'] = pd.rolling_std(df['Close'], window=5).shift(1)
df_new['std_price_30'] = pd.rolling_std(df['Close'], window=21).shift(1)
df_new['std_price_365'] = pd.rolling_std(df['Close'], window=252).shift(1)
df_new['ratio_std_price_5_30'] = df_new['std_price_5'] / df_new['std_price_30']
df_new['ratio_std_price_5_365'] = df_new['std_price_5'] / df_new['std_price_365']
df_new['ratio_std_price_30_365'] = df_new['std_price_30'] / df_new['std_price_365']
# standard deviation of volumes
df_new['std_volume_5'] = pd.rolling_std(df['Volume'], window=5).shift(1)
df_new['std_volume_30'] = pd.rolling_std(df['Volume'], window=21).shift(1)
df_new['std_volume_365'] = pd.rolling_std(df['Volume'], window=252).shift(1)
df_new['ratio_std_volume_5_30'] = df_new['std_volume_5'] / df_new['std_volume_30']
df_new['ratio_std_volume_5_365'] = df_new['std_volume_5'] / df_new['std_volume_365']
df_new['ratio_std_volume_30_365'] = df_new['std_volume_30'] / df_new['std_volume_365']
# # return
df_new['return_1'] = ((df['Close'] - df['Close'].shift(1)) / df['Close'].shift(1)).shift(1)
df_new['return_5'] = ((df['Close'] - df['Close'].shift(5)) / df['Close'].shift(5)).shift(1)
df_new['return_30'] = ((df['Close'] - df['Close'].shift(21)) / df['Close'].shift(21)).shift(1)
df_new['return_365'] = ((df['Close'] - df['Close'].shift(252)) / df['Close'].shift(252)).shift(1)
df_new['moving_avg_5'] = pd.rolling_mean(df_new['return_1'], window=5)
df_new['moving_avg_30'] = pd.rolling_mean(df_new['return_1'], window=21)
df_new['moving_avg_365'] = pd.rolling_mean(df_new['return_1'], window=252)
# the target
df_new['close'] = df['Close']
df_new = df_new.dropna(axis=0)
return df_new
開發者ID:PacktPublishing,項目名稱:Python-Machine-Learning-By-Example,代碼行數:58,代碼來源:1stock_price_prediction.py