本文整理匯總了Python中pandas.read_sas方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.read_sas方法的具體用法?Python pandas.read_sas怎麽用?Python pandas.read_sas使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.read_sas方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_encoding_options
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_encoding_options(datapath):
fname = datapath("io", "sas", "data", "test1.sas7bdat")
df1 = pd.read_sas(fname)
df2 = pd.read_sas(fname, encoding='utf-8')
for col in df1.columns:
try:
df1[col] = df1[col].str.decode('utf-8')
except AttributeError:
pass
tm.assert_frame_equal(df1, df2)
from pandas.io.sas.sas7bdat import SAS7BDATReader
rdr = SAS7BDATReader(fname, convert_header_text=False)
df3 = rdr.read()
rdr.close()
for x, y in zip(df1.columns, df3.columns):
assert(x == y.decode())
示例2: test_encoding_options
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_encoding_options():
dirpath = tm.get_data_path()
fname = os.path.join(dirpath, "test1.sas7bdat")
df1 = pd.read_sas(fname)
df2 = pd.read_sas(fname, encoding='utf-8')
for col in df1.columns:
try:
df1[col] = df1[col].str.decode('utf-8')
except AttributeError:
pass
tm.assert_frame_equal(df1, df2)
from pandas.io.sas.sas7bdat import SAS7BDATReader
rdr = SAS7BDATReader(fname, convert_header_text=False)
df3 = rdr.read()
rdr.close()
for x, y in zip(df1.columns, df3.columns):
assert(x == y.decode())
示例3: read_sas
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def read_sas(
cls,
filepath_or_buffer,
format=None,
index=None,
encoding=None,
chunksize=None,
iterator=False,
): # pragma: no cover
ErrorMessage.default_to_pandas("`read_sas`")
return cls.from_pandas(
pandas.read_sas(
filepath_or_buffer,
format=format,
index=index,
encoding=encoding,
chunksize=chunksize,
iterator=iterator,
)
)
示例4: test_from_iterator
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_from_iterator(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(
self.dirpath, "test{k}.sas7bdat".format(k=k))
rdr = pd.read_sas(fname, iterator=True, encoding='utf-8')
df = rdr.read(2)
tm.assert_frame_equal(df, df0.iloc[0:2, :])
df = rdr.read(3)
tm.assert_frame_equal(df, df0.iloc[2:5, :])
rdr.close()
示例5: get_format_extractor
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def get_format_extractor(self, stream, schema=None):
return SASFormatExtractor(stream, schema, self.config)
# Fix for the stream class provided by DSS
# Seek could be disabled by a one-liner like the following one but read_sas may seek forward
# self.stream.seek = types.MethodType(lambda self, _: False, self.stream)
示例6: __init__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def __init__(self, stream, schema, config):
FormatExtractor.__init__(self, stream)
chunksize = int(config.get("chunksize", "10000"))
sas_format = config.get("sas_format", "sas7bdat")
encoding = config.get("encoding", "latin_1")
dump_to_file = config.get("dump_to_file", False)
self.hasSchema = schema != None
read_from = ForwardSeekStream(stream)
if dump_to_file:
dirname, _ = os.path.split(os.path.abspath(__file__))
fullpath = os.path.join(dirname, 'dumped-%s.sas7bdat' % (time.time()))
with open(fullpath, 'w+') as of:
# Reading 500kb data everytime
for data in iter((lambda:stream.read(500000)), b''):
of.write(data)
read_from = fullpath
self.iterator = pd.read_sas(read_from,
format=sas_format,
iterator=True,
encoding=encoding,
chunksize=chunksize)
self.get_chunk()
示例7: test_from_file
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_from_file(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(
self.dirpath, "test{k}.sas7bdat".format(k=k))
df = pd.read_sas(fname, encoding='utf-8')
tm.assert_frame_equal(df, df0)
示例8: test_from_buffer
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_from_buffer(self):
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = os.path.join(
self.dirpath, "test{k}.sas7bdat".format(k=k))
with open(fname, 'rb') as f:
byts = f.read()
buf = io.BytesIO(byts)
rdr = pd.read_sas(buf, format="sas7bdat",
iterator=True, encoding='utf-8')
df = rdr.read()
tm.assert_frame_equal(df, df0, check_exact=False)
rdr.close()
示例9: test_path_pathlib
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_path_pathlib(self):
from pathlib import Path
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = Path(os.path.join(
self.dirpath, "test{k}.sas7bdat".format(k=k)))
df = pd.read_sas(fname, encoding='utf-8')
tm.assert_frame_equal(df, df0)
示例10: test_path_localpath
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_path_localpath(self):
from py.path import local as LocalPath
for j in 0, 1:
df0 = self.data[j]
for k in self.test_ix[j]:
fname = LocalPath(os.path.join(
self.dirpath, "test{k}.sas7bdat".format(k=k)))
df = pd.read_sas(fname, encoding='utf-8')
tm.assert_frame_equal(df, df0)
示例11: test_iterator_read_too_much
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_iterator_read_too_much(self):
# github #14734
k = self.test_ix[0][0]
fname = os.path.join(self.dirpath, "test{k}.sas7bdat".format(k=k))
rdr = pd.read_sas(fname, format="sas7bdat",
iterator=True, encoding='utf-8')
d1 = rdr.read(rdr.row_count + 20)
rdr.close()
rdr = pd.read_sas(fname, iterator=True, encoding="utf-8")
d2 = rdr.read(rdr.row_count + 20)
tm.assert_frame_equal(d1, d2)
rdr.close()
示例12: test_productsales
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_productsales(datapath):
fname = datapath("io", "sas", "data", "productsales.sas7bdat")
df = pd.read_sas(fname, encoding='utf-8')
fname = datapath("io", "sas", "data", "productsales.csv")
df0 = pd.read_csv(fname, parse_dates=['MONTH'])
vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"]
df0[vn] = df0[vn].astype(np.float64)
tm.assert_frame_equal(df, df0)
示例13: test_12659
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_12659(datapath):
fname = datapath("io", "sas", "data", "test_12659.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "test_12659.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0)
示例14: test_airline
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_airline(datapath):
fname = datapath("io", "sas", "data", "airline.sas7bdat")
df = pd.read_sas(fname)
fname = datapath("io", "sas", "data", "airline.csv")
df0 = pd.read_csv(fname)
df0 = df0.astype(np.float64)
tm.assert_frame_equal(df, df0, check_exact=False)
示例15: test_compact_numerical_values
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_sas [as 別名]
def test_compact_numerical_values(datapath):
# Regression test for #21616
fname = datapath("io", "sas", "data", "cars.sas7bdat")
df = pd.read_sas(fname, encoding='latin-1')
# The two columns CYL and WGT in cars.sas7bdat have column
# width < 8 and only contain integral values.
# Test that pandas doesn't corrupt the numbers by adding
# decimals.
result = df['WGT']
expected = df['WGT'].round()
tm.assert_series_equal(result, expected, check_exact=True)
result = df['CYL']
expected = df['CYL'].round()
tm.assert_series_equal(result, expected, check_exact=True)