本文整理匯總了Python中pandas.read_msgpack方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.read_msgpack方法的具體用法?Python pandas.read_msgpack怎麽用?Python pandas.read_msgpack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.read_msgpack方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_chain_to_entity_index
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def get_chain_to_entity_index(self):
'''Returns an array that maps a chain index to an entity index
Returns
-------
:obj:`array <numpy.ndarray>`
index that maps chain index to an entity index
'''
if self.entityChainIndex is None:
#self.entityChainIndex = np.empty(self.structure.num_chains, dtype='>i4')
self.entityChainIndex = np.empty(self.structure.num_chains, dtype=np.int32)
for i, entity in enumerate(self.structure.entity_list):
chainIndexList = entity['chainIndexList']
# pd.read_msgpack returns tuple, msgpack-python returns list
if type(chainIndexList) is not list:
chainIndexList = list(chainIndexList)
self.entityChainIndex[chainIndexList] = i
return self.entityChainIndex
示例2: chain_to_entity_index
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def chain_to_entity_index(self):
'''Returns an array that maps a chain index to an entity index
Returns
-------
:obj:`array <numpy.ndarray>`
index that maps chain index to an entity index
'''
if self.entityChainIndex is None:
self.entityChainIndex = np.empty(self.num_chains, dtype=np.int32)
print("chain_to_entity_index: num_chains", self.num_chains)
for i, entity in enumerate(self.entity_list):
#chainIndexList = entity['chainIndexList']
# pd.read_msgpack returns tuple, msgpack-python returns list
# TODO check this
#if type(chainIndexList) is not list:
# chainIndexList = list(chainIndexList)
# TODO need to update entity_list when self.truncate
for index in entity['chainIndexList']:
if index < self.num_chains:
self.entityChainIndex[index] = i
示例3: _call_mmtf
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def _call_mmtf(f, first_model=False):
'''Call function for mmtf files'''
if ".mmtf.gz" in f:
name = f.split('/')[-1].split('.')[0].upper()
data = gzip.open(f, 'rb')
#unpack = msgpack.unpack(data, raw=False)
unpack = pd.read_msgpack(data)
decoder = MmtfStructure(unpack, first_model)
return (name, decoder)
elif ".mmtf" in f:
#name = f.split('/')[-1].split('.')[0].upper()
#unpack = msgpack.unpack(open(f, "rb"), raw=False)
#decoder = MmtfStructure(unpack)
name = f.split('/')[-1].split('.')[0].upper()
unpack = pd.read_msgpack(f)
decoder = MmtfStructure(unpack, first_model)
return (name, decoder)
示例4: __init__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def __init__(self,
path=None,
lock=None,
clean_on_failure=True,
serialization='msgpack'):
self.path = path if path is not None else mkdtemp()
self.lock = lock if lock is not None else nop_context
self.clean_on_failure = clean_on_failure
if serialization == 'msgpack':
self.serialize = pd.DataFrame.to_msgpack
self.deserialize = pd.read_msgpack
self._protocol = None
else:
s = serialization.split(':', 1)
if s[0] != 'pickle':
raise ValueError(
"'serialization' must be either 'msgpack' or 'pickle[:n]'",
)
self._protocol = int(s[1]) if len(s) == 2 else None
self.serialize = self._serialize_pickle
self.deserialize = pickle.load
ensure_directory(self.path)
示例5: msgpack_deserialize
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def msgpack_deserialize(message):
# TODO: handle meta and cases where data is None
topic = message[0].decode("utf-8")
data = message[1]
return [topic, pd.read_msgpack(data)]
# def arrow_serialize(message):
# topic = message[0].decode('utf-8')
# df = message[1]
# return [topic, pa.serialize(df).to_buffer()]
# def arrow_deserialize(message):
# topic = message[0]
# data = message[1]
# return [topic, pa.deserialize(data)]
示例6: get
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def get(self, orik):
k = self.prefix + orik
if self.exists(orik):
return pd.read_msgpack(self._cache.get(k))
else:
try:
idx = self._key_list.index(k)
self._key_list.pop(idx)
except ValueError as e:
pass
raise CacheMissException(k)
示例7: read_msgpack
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def read_msgpack(self):
"""
Use pandas.read_msgpack to load dataframe.mpack.
"""
file_name = os.path.join(self.data_dir, "dataframe.mpack")
pd.read_msgpack(file_name)
示例8: _get_structure
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def _get_structure(pdbId, reduced, first_model):
'''Download and decode a list of structure from a list of PDBid
Parameters
----------
pdbID : list
List of structures to download
Returns
-------
tuple
pdbID and deccoder
'''
try:
#unpack = default_api.get_raw_data_from_url(pdbId, reduced)
url = default_api.get_url(pdbId, reduced)
request = urllib2.Request(url)
request.add_header('Accept-encoding', 'gzip')
response = urllib2.urlopen(request)
if response.info().get('Content-Encoding') == 'gzip':
data = gzip.decompress(response.read())
else:
data = response.read()
unpack = pd.read_msgpack(data)
decoder = MmtfStructure(unpack, first_model)
return (pdbId, decoder)
except urllib.error.HTTPError:
print(f"ERROR: {pdbId} is not a valid pdbId")
示例9: _call_sequence_file
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def _call_sequence_file(t, first_model):
'''Call function for hadoop sequence files'''
# TODO: check if all sequence files are gzipped
# data = default_api.ungzip_data(t[1])
# unpack = msgpack.unpackb(data.read(), raw=False)
# decoder = MmtfStructure(unpack)
# return (str(t[0]), decoder)
data = gzip.decompress(t[1])
unpack = pd.read_msgpack(data)
decoder = MmtfStructure(unpack, first_model)
return (t[0], decoder)
示例10: df_from_bytes_msgpack_
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def df_from_bytes_msgpack_(bytes_: bytes) -> pd.DataFrame:
try:
df = pd.read_msgpack(BytesIO(bytes_))
except UnicodeDecodeError:
raise DataFrameLoadException("Not a DataFrame")
if not isinstance(df, pd.DataFrame):
raise DataFrameLoadException("Not a DataFrame")
return df
示例11: on_message_callback
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import read_msgpack [as 別名]
def on_message_callback(self, channel, method, properties, body):
context = pd.read_msgpack(body)
# merge update
if self.market_data is None:
# self.market_data = context
pass
else:
logger.info("Before market_data, concat and update start, 合並市場數據")
cur_time = datetime.datetime.now()
self.market_data.update(context)
end_time = datetime.datetime.now()
cost_time = (end_time - cur_time).total_seconds()
logger.info("Before market_data, concat and update end, 合並市場數據, 耗時,cost: %s s" % cost_time)
logger.info(self.market_data.to_csv(float_format='%.3f'))
filename = get_file_name_by_date('stock.market.%s.csv', self.log_dir)
# 不追加,複寫
logging_csv(self.market_data, filename, index=True, mode='w')
# group by code and resample
try:
cur_time = datetime.datetime.now()
bar_data: pd.DataFrame = tdx_stock_bar_resample_parallel(
self.market_data[self.market_data.close > 0], self.frequency, jobs=self.cpu_count
)
end_time = datetime.datetime.now()
cost_time = (end_time - cur_time).total_seconds()
logger.info("數據重采樣耗時,cost: %s" % cost_time)
logger.info("發送重采樣數據中start")
self.publish_msg(bar_data.to_msgpack())
logger.info("發送重采樣數據完畢end")
logger.info(bar_data.to_csv(float_format='%.3f'))
filename = get_file_name_by_date('stock.bar.%s.csv', self.log_dir)
# 不追加,複寫
logging_csv(bar_data, filename, index=True, mode='w')
del bar_data
except Exception as e:
logger.error("failure股票重采樣數據. " + e.__str__())
finally:
logger.info("重采樣計數 count : %s" % self.count)
self.count += 1
del context