本文整理匯總了Python中pandas.plotting方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.plotting方法的具體用法?Python pandas.plotting怎麽用?Python pandas.plotting使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.plotting方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getattribute__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def __getattribute__(self, item):
"""This method will override the parameters passed and convert any Modin
DataFrames to pandas so that they can be plotted normally
"""
if hasattr(pdplot, item):
func = getattr(pdplot, item)
if callable(func):
def wrap_func(*args, **kwargs):
"""Convert Modin DataFrames to pandas then call the function"""
args = tuple(
arg if not isinstance(arg, DataFrame) else to_pandas(arg)
for arg in args
)
kwargs = {
kwd: val if not isinstance(val, DataFrame) else to_pandas(val)
for kwd, val in kwargs.items()
}
return func(*args, **kwargs)
return wrap_func
else:
return func
else:
return object.__getattribute__(self, item)
示例2: setup_method
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def setup_method(self, method):
import matplotlib as mpl
mpl.rcdefaults()
self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0()
self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0()
self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2()
self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0()
self.bp_n_objects = 7
self.polycollection_factor = 2
self.default_figsize = (6.4, 4.8)
self.default_tick_position = 'left'
n = 100
with tm.RNGContext(42):
gender = np.random.choice(['Male', 'Female'], size=n)
classroom = np.random.choice(['A', 'B', 'C'], size=n)
self.hist_df = DataFrame({'gender': gender,
'classroom': classroom,
'height': random.normal(66, 4, size=n),
'weight': random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
self.tdf = tm.makeTimeDataFrame()
self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
"B": np.random.uniform(size=20),
"C": np.arange(20) + np.random.uniform(
size=20)})
示例3: _ok_for_gaussian_kde
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def _ok_for_gaussian_kde(kind):
if kind in ['kde', 'density']:
try:
from scipy.stats import gaussian_kde # noqa
except ImportError:
return False
return plotting._compat._mpl_ge_1_5_0()
示例4: outer
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def outer(t=t):
def wrapper(*args, **kwargs):
warnings.warn("'pandas.tools.plotting.{t}' is deprecated, "
"import 'pandas.plotting.{t}' instead.".format(t=t),
FutureWarning, stacklevel=2)
return getattr(_plotting, t)(*args, **kwargs)
return wrapper
示例5: plot_multi
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def plot_multi(data, cols=None, spacing=.1, **kwargs):
from pandas import plotting
# Get default color style from pandas - can be changed to any other color list
if cols is None: cols = data.columns
if len(cols) == 0: return
colors = getattr(getattr(plotting, '_style'), '_get_standard_colors')(num_colors=len(cols))
# First axis
ax = data.loc[:, cols[0]].plot(label=cols[0], color=colors[0], **kwargs)
ax.set_ylabel(ylabel=cols[0])
lines, labels = ax.get_legend_handles_labels()
for n in range(1, len(cols)):
# Multiple y-axes
ax_new = ax.twinx()
ax_new.spines['right'].set_position(('axes', 1 + spacing * (n - 1)))
data.loc[:, cols[n]].plot(ax=ax_new, label=cols[n], color=colors[n % len(colors)])
ax_new.set_ylabel(ylabel=cols[n])
# Proper legend position
line, label = ax_new.get_legend_handles_labels()
lines += line
labels += label
ax.legend(lines, labels, loc=0)
return ax
示例6: __dir__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def __dir__(self):
"""This allows tab completion of plotting library"""
return dir(pdplot)
示例7: setup_method
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def setup_method(self, method):
import matplotlib as mpl
mpl.rcdefaults()
self.mpl_le_1_2_1 = plotting._compat._mpl_le_1_2_1()
self.mpl_ge_1_3_1 = plotting._compat._mpl_ge_1_3_1()
self.mpl_ge_1_4_0 = plotting._compat._mpl_ge_1_4_0()
self.mpl_ge_1_5_0 = plotting._compat._mpl_ge_1_5_0()
self.mpl_ge_2_0_0 = plotting._compat._mpl_ge_2_0_0()
self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0()
if self.mpl_ge_1_4_0:
self.bp_n_objects = 7
else:
self.bp_n_objects = 8
if self.mpl_ge_1_5_0:
# 1.5 added PolyCollections to legend handler
# so we have twice as many items.
self.polycollection_factor = 2
else:
self.polycollection_factor = 1
if self.mpl_ge_2_0_0:
self.default_figsize = (6.4, 4.8)
else:
self.default_figsize = (8.0, 6.0)
self.default_tick_position = 'left' if self.mpl_ge_2_0_0 else 'default'
n = 100
with tm.RNGContext(42):
gender = np.random.choice(['Male', 'Female'], size=n)
classroom = np.random.choice(['A', 'B', 'C'], size=n)
self.hist_df = DataFrame({'gender': gender,
'classroom': classroom,
'height': random.normal(66, 4, size=n),
'weight': random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
self.tdf = tm.makeTimeDataFrame()
self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
"B": np.random.uniform(size=20),
"C": np.arange(20) + np.random.uniform(
size=20)})
示例8: setup_method
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import plotting [as 別名]
def setup_method(self, method):
import matplotlib as mpl
mpl.rcdefaults()
self.mpl_le_1_2_1 = plotting._compat._mpl_le_1_2_1()
self.mpl_ge_1_3_1 = plotting._compat._mpl_ge_1_3_1()
self.mpl_ge_1_4_0 = plotting._compat._mpl_ge_1_4_0()
self.mpl_ge_1_5_0 = plotting._compat._mpl_ge_1_5_0()
self.mpl_ge_2_0_0 = plotting._compat._mpl_ge_2_0_0()
self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1()
if self.mpl_ge_1_4_0:
self.bp_n_objects = 7
else:
self.bp_n_objects = 8
if self.mpl_ge_1_5_0:
# 1.5 added PolyCollections to legend handler
# so we have twice as many items.
self.polycollection_factor = 2
else:
self.polycollection_factor = 1
if self.mpl_ge_2_0_0:
self.default_figsize = (6.4, 4.8)
else:
self.default_figsize = (8.0, 6.0)
self.default_tick_position = 'left' if self.mpl_ge_2_0_0 else 'default'
# common test data
from pandas import read_csv
base = os.path.join(os.path.dirname(curpath()), os.pardir)
path = os.path.join(base, 'tests', 'data', 'iris.csv')
self.iris = read_csv(path)
n = 100
with tm.RNGContext(42):
gender = np.random.choice(['Male', 'Female'], size=n)
classroom = np.random.choice(['A', 'B', 'C'], size=n)
self.hist_df = DataFrame({'gender': gender,
'classroom': classroom,
'height': random.normal(66, 4, size=n),
'weight': random.normal(161, 32, size=n),
'category': random.randint(4, size=n)})
self.tdf = tm.makeTimeDataFrame()
self.hexbin_df = DataFrame({"A": np.random.uniform(size=20),
"B": np.random.uniform(size=20),
"C": np.arange(20) + np.random.uniform(
size=20)})