本文整理匯總了Python中pandas.option_context方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.option_context方法的具體用法?Python pandas.option_context怎麽用?Python pandas.option_context使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.option_context方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_sparse_mi_max_row
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_sparse_mi_max_row(self):
idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0),
('C', 0), ('C', 1), ('C', 2)])
s = pd.Series([1, np.nan, np.nan, 3, np.nan, np.nan],
index=idx).to_sparse()
result = repr(s)
dfm = self.dtype_format_for_platform
exp = ("A 0 1.0\n 1 NaN\nB 0 NaN\n"
"C 0 3.0\n 1 NaN\n 2 NaN\n"
"dtype: Sparse[float64, nan]\nBlockIndex\n"
"Block locations: array([0, 3]{0})\n"
"Block lengths: array([1, 1]{0})".format(dfm))
assert result == exp
with option_context("display.max_rows", 3,
"display.show_dimensions", False):
# GH 13144
result = repr(s)
exp = ("A 0 1.0\n ... \nC 2 NaN\n"
"dtype: Sparse[float64, nan]\nBlockIndex\n"
"Block locations: array([0, 3]{0})\n"
"Block lengths: array([1, 1]{0})".format(dfm))
assert result == exp
示例2: test_sparse_bool
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_sparse_bool(self):
# GH 13110
s = pd.SparseSeries([True, False, False, True, False, False],
fill_value=False)
result = repr(s)
dtype = '' if use_32bit_repr else ', dtype=int32'
exp = ("0 True\n1 False\n2 False\n"
"3 True\n4 False\n5 False\n"
"dtype: Sparse[bool, False]\nBlockIndex\n"
"Block locations: array([0, 3]{0})\n"
"Block lengths: array([1, 1]{0})".format(dtype))
assert result == exp
with option_context("display.max_rows", 3):
result = repr(s)
exp = ("0 True\n ... \n5 False\n"
"Length: 6, dtype: Sparse[bool, False]\nBlockIndex\n"
"Block locations: array([0, 3]{0})\n"
"Block lengths: array([1, 1]{0})".format(dtype))
assert result == exp
示例3: test_sparse_int
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_sparse_int(self):
# GH 13110
s = pd.SparseSeries([0, 1, 0, 0, 1, 0], fill_value=False)
result = repr(s)
dtype = '' if use_32bit_repr else ', dtype=int32'
exp = ("0 0\n1 1\n2 0\n3 0\n4 1\n"
"5 0\ndtype: Sparse[int64, False]\nBlockIndex\n"
"Block locations: array([1, 4]{0})\n"
"Block lengths: array([1, 1]{0})".format(dtype))
assert result == exp
with option_context("display.max_rows", 3,
"display.show_dimensions", False):
result = repr(s)
exp = ("0 0\n ..\n5 0\n"
"dtype: Sparse[int64, False]\nBlockIndex\n"
"Block locations: array([1, 4]{0})\n"
"Block lengths: array([1, 1]{0})".format(dtype))
assert result == exp
示例4: test_latex_repr
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_latex_repr(self):
result = r"""\begin{tabular}{ll}
\toprule
{} & 0 \\
\midrule
0 & $\alpha$ \\
1 & b \\
2 & c \\
\bottomrule
\end{tabular}
"""
with option_context('display.latex.escape', False,
'display.latex.repr', True):
s = Series([r'$\alpha$', 'b', 'c'])
assert result == s._repr_latex_()
assert s._repr_latex_() is None
示例5: test_categorical_repr
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_categorical_repr(self):
a = Series(Categorical([1, 2, 3, 4]))
exp = u("0 1\n1 2\n2 3\n3 4\n" +
"dtype: category\nCategories (4, int64): [1, 2, 3, 4]")
assert exp == a.__unicode__()
a = Series(Categorical(["a", "b"] * 25))
exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" +
"Length: 50, dtype: category\nCategories (2, object): [a, b]")
with option_context("display.max_rows", 5):
assert exp == repr(a)
levs = list("abcdefghijklmnopqrstuvwxyz")
a = Series(Categorical(["a", "b"], categories=levs, ordered=True))
exp = u("0 a\n1 b\n" + "dtype: category\n"
"Categories (26, object): [a < b < c < d ... w < x < y < z]")
assert exp == a.__unicode__()
示例6: test_var_std
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_var_std(self, float_frame_with_na, datetime_frame, float_frame,
float_string_frame):
alt = lambda x: np.var(x, ddof=1)
assert_stat_op_calc('var', alt, float_frame_with_na)
assert_stat_op_api('var', float_frame, float_string_frame)
alt = lambda x: np.std(x, ddof=1)
assert_stat_op_calc('std', alt, float_frame_with_na)
assert_stat_op_api('std', float_frame, float_string_frame)
result = datetime_frame.std(ddof=4)
expected = datetime_frame.apply(lambda x: x.std(ddof=4))
tm.assert_almost_equal(result, expected)
result = datetime_frame.var(ddof=4)
expected = datetime_frame.apply(lambda x: x.var(ddof=4))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.random((1, 1000)), 1000, 0)
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
with pd.option_context('use_bottleneck', False):
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
示例7: test_sem
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_sem(self, float_frame_with_na, datetime_frame,
float_frame, float_string_frame):
alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x))
assert_stat_op_calc('sem', alt, float_frame_with_na)
assert_stat_op_api('sem', float_frame, float_string_frame)
result = datetime_frame.sem(ddof=4)
expected = datetime_frame.apply(
lambda x: x.std(ddof=4) / np.sqrt(len(x)))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.random((1, 1000)), 1000, 0)
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
with pd.option_context('use_bottleneck', False):
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
示例8: test_idxminmax_with_inf
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_idxminmax_with_inf(self):
# For numeric data with NA and Inf (GH #13595)
s = pd.Series([0, -np.inf, np.inf, np.nan])
assert s.idxmin() == 1
assert np.isnan(s.idxmin(skipna=False))
assert s.idxmax() == 2
assert np.isnan(s.idxmax(skipna=False))
# Using old-style behavior that treats floating point nan, -inf, and
# +inf as missing
with pd.option_context('mode.use_inf_as_na', True):
assert s.idxmin() == 0
assert np.isnan(s.idxmin(skipna=False))
assert s.idxmax() == 0
np.isnan(s.idxmax(skipna=False))
示例9: test_show_null_counts
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_show_null_counts(self):
df = DataFrame(1, columns=range(10), index=range(10))
df.iloc[1, 1] = np.nan
def check(null_counts, result):
buf = StringIO()
df.info(buf=buf, null_counts=null_counts)
assert ('non-null' in buf.getvalue()) is result
with option_context('display.max_info_rows', 20,
'display.max_info_columns', 20):
check(None, True)
check(True, True)
check(False, False)
with option_context('display.max_info_rows', 5,
'display.max_info_columns', 5):
check(None, False)
check(True, False)
check(False, False)
示例10: test_repr_truncation
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_repr_truncation(self):
max_len = 20
with option_context("display.max_colwidth", max_len):
df = DataFrame({'A': np.random.randn(10),
'B': [tm.rands(np.random.randint(
max_len - 1, max_len + 1)) for i in range(10)
]})
r = repr(df)
r = r[r.find('\n') + 1:]
adj = fmt._get_adjustment()
for line, value in lzip(r.split('\n'), df['B']):
if adj.len(value) + 1 > max_len:
assert '...' in line
else:
assert '...' not in line
with option_context("display.max_colwidth", 999999):
assert '...' not in repr(df)
with option_context("display.max_colwidth", max_len + 2):
assert '...' not in repr(df)
示例11: test_expand_frame_repr
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_expand_frame_repr(self):
df_small = DataFrame('hello', [0], [0])
df_wide = DataFrame('hello', [0], lrange(10))
df_tall = DataFrame('hello', lrange(30), lrange(5))
with option_context('mode.sim_interactive', True):
with option_context('display.max_columns', 10, 'display.width', 20,
'display.max_rows', 20,
'display.show_dimensions', True):
with option_context('display.expand_frame_repr', True):
assert not has_truncated_repr(df_small)
assert not has_expanded_repr(df_small)
assert not has_truncated_repr(df_wide)
assert has_expanded_repr(df_wide)
assert has_vertically_truncated_repr(df_tall)
assert has_expanded_repr(df_tall)
with option_context('display.expand_frame_repr', False):
assert not has_truncated_repr(df_small)
assert not has_expanded_repr(df_small)
assert not has_horizontally_truncated_repr(df_wide)
assert not has_expanded_repr(df_wide)
assert has_vertically_truncated_repr(df_tall)
assert not has_expanded_repr(df_tall)
示例12: test_str_max_colwidth
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_str_max_colwidth(self):
# GH 7856
df = pd.DataFrame([{'a': 'foo',
'b': 'bar',
'c': 'uncomfortably long line with lots of stuff',
'd': 1}, {'a': 'foo',
'b': 'bar',
'c': 'stuff',
'd': 1}])
df.set_index(['a', 'b', 'c'])
assert str(df) == (
' a b c d\n'
'0 foo bar uncomfortably long line with lots of stuff 1\n'
'1 foo bar stuff 1')
with option_context('max_colwidth', 20):
assert str(df) == (' a b c d\n'
'0 foo bar uncomfortably lo... 1\n'
'1 foo bar stuff 1')
示例13: test_truncate_with_different_dtypes
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_truncate_with_different_dtypes(self):
# 11594, 12045
# when truncated the dtypes of the splits can differ
# 11594
import datetime
s = Series([datetime.datetime(2012, 1, 1)] * 10 +
[datetime.datetime(1012, 1, 2)] + [
datetime.datetime(2012, 1, 3)] * 10)
with pd.option_context('display.max_rows', 8):
result = str(s)
assert 'object' in result
# 12045
df = DataFrame({'text': ['some words'] + [None] * 9})
with pd.option_context('display.max_rows', 8,
'display.max_columns', 3):
result = str(df)
assert 'None' in result
assert 'NaN' not in result
示例14: test_wide_repr
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_wide_repr(self):
with option_context('mode.sim_interactive', True,
'display.show_dimensions', True,
'display.max_columns', 20):
max_cols = get_option('display.max_columns')
df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
assert "10 rows x {c} columns".format(c=max_cols - 1) in rep_str
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
assert rep_str != wide_repr
with option_context('display.width', 120):
wider_repr = repr(df)
assert len(wider_repr) < len(wide_repr)
reset_option('display.expand_frame_repr')
示例15: test_wide_repr_named
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import option_context [as 別名]
def test_wide_repr_named(self):
with option_context('mode.sim_interactive', True,
'display.max_columns', 20):
max_cols = get_option('display.max_columns')
df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
df.index.name = 'DataFrame Index'
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
assert rep_str != wide_repr
with option_context('display.width', 150):
wider_repr = repr(df)
assert len(wider_repr) < len(wide_repr)
for line in wide_repr.splitlines()[1::13]:
assert 'DataFrame Index' in line
reset_option('display.expand_frame_repr')