本文整理匯總了Python中pandas.isnull方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.isnull方法的具體用法?Python pandas.isnull怎麽用?Python pandas.isnull使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.isnull方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_mAP_N
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def compute_mAP_N(result,this_cls_pred,this_cls_gt):
ap = np.zeros(len(result.tiou_thresholds))
tp = np.zeros((len(result.tiou_thresholds), len(this_cls_pred)))
fp = np.zeros((len(result.tiou_thresholds), len(this_cls_pred)))
for tidx, tiou in enumerate(result.tiou_thresholds):
fp[tidx,pd.isnull(this_cls_pred[result.matched_gt_id_cols[tidx]]).values] = 1
tp[tidx,~(pd.isnull(this_cls_pred[result.matched_gt_id_cols[tidx]]).values)] = 1
tp_cumsum = np.cumsum(tp, axis=1).astype(np.float)
fp_cumsum = np.cumsum(fp, axis=1).astype(np.float)
recall_cumsum = tp_cumsum / len(np.unique(this_cls_gt['gt-id']))
precision_cumsum = recall_cumsum * result.average_num_instance_per_class / (recall_cumsum * result.average_num_instance_per_class + fp_cumsum)
for tidx in range(len(result.tiou_thresholds)):
ap[tidx] = interpolated_prec_rec(precision_cumsum[tidx,:], recall_cumsum[tidx,:])
return ap.mean()
# Initialize true positive and false positive vectors.
示例2: SetDistribution
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def SetDistribution(self, distinct_values):
"""This is all the values this column will ever see."""
assert self.all_distinct_values is None
# pd.isnull returns true for both np.nan and np.datetime64('NaT').
is_nan = pd.isnull(distinct_values)
contains_nan = np.any(is_nan)
dv_no_nan = distinct_values[~is_nan]
# NOTE: np.sort puts NaT values at beginning, and NaN values at end.
# For our purposes we always add any null value to the beginning.
vs = np.sort(np.unique(dv_no_nan))
if contains_nan and np.issubdtype(distinct_values.dtype, np.datetime64):
vs = np.insert(vs, 0, np.datetime64('NaT'))
elif contains_nan:
vs = np.insert(vs, 0, np.nan)
if self.distribution_size is not None:
assert len(vs) == self.distribution_size
self.all_distinct_values = vs
self.distribution_size = len(vs)
return self
示例3: _compute_vectorized
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def _compute_vectorized(self, s_left, s_right):
# Values or agree/disagree
if self.agree_value == 'value':
compare = s_left.copy()
compare[s_left != s_right] = self.disagree_value
else:
compare = pandas.Series(self.disagree_value, index=s_left.index)
compare[s_left == s_right] = self.agree_value
# Only when disagree value is not identical with the missing value
if self.disagree_value != self.missing_value:
compare[(s_left.isnull() | s_right.isnull())] = self.missing_value
return compare
示例4: _compute_frequency
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def _compute_frequency(self, col):
# https://github.com/pydata/pandas/issues/3729
na_value = 'NAN'
value_count = col.fillna(na_value)
c = value_count.groupby(by=value_count).transform('count')
c = c.astype(numpy.float64)
if self.normalise:
c = c / len(col)
# replace missing values
c[col.isnull()] = self.missing_value
return c
示例5: jarowinkler_similarity
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def jarowinkler_similarity(s1, s2):
conc = pandas.Series(list(zip(s1, s2)))
from jellyfish import jaro_winkler
def jaro_winkler_apply(x):
try:
return jaro_winkler(x[0], x[1])
except Exception as err:
if pandas.isnull(x[0]) or pandas.isnull(x[1]):
return np.nan
else:
raise err
return conc.apply(jaro_winkler_apply)
示例6: levenshtein_similarity
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def levenshtein_similarity(s1, s2):
conc = pandas.Series(list(zip(s1, s2)))
from jellyfish import levenshtein_distance
def levenshtein_apply(x):
try:
return 1 - levenshtein_distance(x[0], x[1]) \
/ np.max([len(x[0]), len(x[1])])
except Exception as err:
if pandas.isnull(x[0]) or pandas.isnull(x[1]):
return np.nan
else:
raise err
return conc.apply(levenshtein_apply)
示例7: damerau_levenshtein_similarity
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def damerau_levenshtein_similarity(s1, s2):
conc = pandas.Series(list(zip(s1, s2)))
from jellyfish import damerau_levenshtein_distance
def damerau_levenshtein_apply(x):
try:
return 1 - damerau_levenshtein_distance(x[0], x[1]) \
/ np.max([len(x[0]), len(x[1])])
except Exception as err:
if pandas.isnull(x[0]) or pandas.isnull(x[1]):
return np.nan
else:
raise err
return conc.apply(damerau_levenshtein_apply)
示例8: detect_integer
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def detect_integer(e):
if e == '' or pd.isnull(e): return False
try:
if integer_regex.match(e): return True
except:
try:
if float(e).is_integer(): return True
except:
try:
for l in locales:
locale.setlocale(locale.LC_all, l)
if float(locale.atoi(e)).is_integer(): return True
except:
pass
return False
示例9: detect_decimal
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def detect_decimal(e):
if e == '' or pd.isnull(e): return False
if decimal_regex.match(e):
return True
try:
d = Decimal(e)
return True
except:
try:
for l in locales:
locale.setlocale(locale.LC_all, l)
value = locale.atof(e)
if sys.version_info < (2, 7):
value = str(e)
return Decimal(e)
except:
pass
return False
示例10: _recmat_exact
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def _recmat_exact(presented, recalled, features):
lists = presented.index.get_values()
cols = max(presented.shape[1], recalled.shape[1])
result = np.empty((presented.shape[0], cols))*np.nan
for li, l in enumerate(lists):
p_list = presented.loc[l]
r_list = recalled.loc[l]
for i, feature in enumerate(features):
get_feature = lambda x: np.array(x[feature]) if not np.array(pd.isnull(x['item'])).any() else np.nan
p = np.vstack(p_list.apply(get_feature).get_values())
r = r_list.dropna().apply(get_feature).get_values()
r = np.vstack(list(filter(lambda x: x is not np.nan, r)))
try:
m = [np.where((p==x).all(axis=1))[0] for x in r]
except AttributeError:
m = []
result[li, :len(m)] = [x[0]+1 if len(x)>0 else np.nan for x in m]
return result
示例11: test_conversions
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def test_conversions(data_missing):
# astype to object series
df = pd.DataFrame({'A': data_missing})
result = df['A'].astype('object')
expected = pd.Series(np.array([np.nan, 1], dtype=object), name='A')
tm.assert_series_equal(result, expected)
# convert to object ndarray
# we assert that we are exactly equal
# including type conversions of scalars
result = df['A'].astype('object').values
expected = np.array([np.nan, 1], dtype=object)
tm.assert_numpy_array_equal(result, expected)
for r, e in zip(result, expected):
if pd.isnull(r):
assert pd.isnull(e)
elif is_integer(r):
# PY2 can be int or long
assert r == e
assert is_integer(e)
else:
assert r == e
assert type(r) == type(e)
示例12: solve
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def solve(self, solver='glpk', verbose=False, keepfiles=False, resolve=False, **kwargs):
if solver == 'xpress':
resolve = True
solve_model(self._model, solver=solver, verbose=verbose, keepfiles=keepfiles, **kwargs)
self._results = PSSTResults(self)
if resolve:
for t, row in self.results.unit_commitment.iterrows():
for g, v in row.iteritems():
if not pd.isnull(v):
self._model.UnitOn[g, t].fixed = True
self._model.UnitOn[g, t] = int(float(v))
solve_model(self._model, solver=solver, verbose=verbose, keepfiles=keepfiles, is_mip=False, **kwargs)
self._results = PSSTResults(self)
self._status = 'solved'
示例13: test_gene
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def test_gene(self):
dataframe = cellphonedb_app.cellphonedb.database_manager.get_repository(
'gene').get_all_expanded()
data_not_match = False
for gene in gene_entries:
db_gene = dataframe
for column_name in gene:
if gene[column_name] == None:
db_gene = db_gene[pd.isnull(db_gene[column_name])]
else:
db_gene = db_gene[db_gene[column_name] == gene[column_name]]
if (len(db_gene) < 1):
app_logger.warning('Failed cheking Gene:')
app_logger.warning('Expected data:')
app_logger.warning(gene)
data_not_match = True
self.assertFalse(data_not_match, 'Some Gene doesnt match')
示例14: test_calc_stats
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def test_calc_stats():
# test twelve_month_win_perc divide by zero
prices = df.C['2010-10-01':'2011-08-01']
stats = ffn.calc_stats(prices).stats
assert pd.isnull(stats['twelve_month_win_perc'])
prices = df.C['2009-10-01':'2011-08-01']
stats = ffn.calc_stats(prices).stats
assert not pd.isnull(stats['twelve_month_win_perc'])
# test yearly_sharpe divide by zero
prices = df.C['2009-01-01':'2012-01-01']
stats = ffn.calc_stats(prices).stats
assert 'yearly_sharpe' in stats.index
prices[prices > 0.0] = 1.0
# throws warnings
stats = ffn.calc_stats(prices).stats
assert pd.isnull(stats['yearly_sharpe'])
示例15: _mode
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isnull [as 別名]
def _mode(x, def_fill=ImputerMixin._def_fill):
"""Get the most common value in a 1d
H2OFrame. Ties will be handled in a non-specified
manner.
Parameters
----------
x : ``H2OFrame``, shape=(n_samples, 1)
The 1d frame from which to derive the mode
"""
idx = x.as_data_frame(use_pandas=True)[x.columns[0]].value_counts().index
# if the most common is null, then return the next most common.
# if there is no next common (i.e., 100% null) then we return the def_fill
return idx[0] if not pd.isnull(idx[0]) else idx[1] if idx.shape[0] > 1 else def_fill