當前位置: 首頁>>代碼示例>>Python>>正文


Python pandas.isna方法代碼示例

本文整理匯總了Python中pandas.isna方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.isna方法的具體用法?Python pandas.isna怎麽用?Python pandas.isna使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas的用法示例。


在下文中一共展示了pandas.isna方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_isna

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_isna(self, data_missing):
        expected_dtype = SparseDtype(bool,
                                     pd.isna(data_missing.dtype.fill_value))
        expected = SparseArray([True, False], dtype=expected_dtype)

        result = pd.isna(data_missing)
        self.assert_equal(result, expected)

        result = pd.Series(data_missing).isna()
        expected = pd.Series(expected)
        self.assert_series_equal(result, expected)

        # GH 21189
        result = pd.Series(data_missing).drop([0, 1]).isna()
        expected = pd.Series([], dtype=expected_dtype)
        self.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_sparse.py

示例2: test_fillna_frame

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_fillna_frame(self, data_missing):
        # Have to override to specify that fill_value will change.
        fill_value = data_missing[1]

        result = pd.DataFrame({
            "A": data_missing,
            "B": [1, 2]
        }).fillna(fill_value)

        if pd.isna(data_missing.fill_value):
            dtype = SparseDtype(data_missing.dtype, fill_value)
        else:
            dtype = data_missing.dtype

        expected = pd.DataFrame({
            "A": data_missing._from_sequence([fill_value, fill_value],
                                             dtype=dtype),
            "B": [1, 2],
        })

        self.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:23,代碼來源:test_sparse.py

示例3: test_nan_stays_float

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_nan_stays_float():

    # GH 7031
    idx0 = pd.MultiIndex(levels=[["A", "B"], []],
                         codes=[[1, 0], [-1, -1]],
                         names=[0, 1])
    idx1 = pd.MultiIndex(levels=[["C"], ["D"]],
                         codes=[[0], [0]],
                         names=[0, 1])
    idxm = idx0.join(idx1, how='outer')
    assert pd.isna(idx0.get_level_values(1)).all()
    # the following failed in 0.14.1
    assert pd.isna(idxm.get_level_values(1)[:-1]).all()

    df0 = pd.DataFrame([[1, 2]], index=idx0)
    df1 = pd.DataFrame([[3, 4]], index=idx1)
    dfm = df0 - df1
    assert pd.isna(df0.index.get_level_values(1)).all()
    # the following failed in 0.14.1
    assert pd.isna(dfm.index.get_level_values(1)[:-1]).all() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_missing.py

示例4: test_gap_upsample

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_gap_upsample(self):
        low = tm.makeTimeSeries()
        low[5:25] = np.nan
        _, ax = self.plt.subplots()
        low.plot(ax=ax)

        idxh = date_range(low.index[0], low.index[-1], freq='12h')
        s = Series(np.random.randn(len(idxh)), idxh)
        s.plot(secondary_y=True)
        lines = ax.get_lines()
        assert len(lines) == 1
        assert len(ax.right_ax.get_lines()) == 1

        line = lines[0]
        data = line.get_xydata()
        if (self.mpl_ge_3_0_0 or not self.mpl_ge_2_0_1
                or (self.mpl_ge_2_1_0 and not self.mpl_ge_2_2_2)):
            # 2.0.0, 2.2.0 (exactly) or >= 3.0.0
            data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)

        assert isinstance(data, np.ma.core.MaskedArray)
        mask = data.mask
        assert mask[5:25, 1].all() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_datetimelike.py

示例5: test_iloc_getitem_dups

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_iloc_getitem_dups(self):

        # no dups in panel (bug?)
        self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix',
                          {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]},
                          objs=['series', 'frame'], typs=['ints', 'uints'])

        # GH 6766
        df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}])
        df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}])
        df = concat([df1, df2], axis=1)

        # cross-sectional indexing
        result = df.iloc[0, 0]
        assert isna(result)

        result = df.iloc[0, :]
        expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'],
                          name=0)
        tm.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_iloc.py

示例6: test_interpolate_index_values

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_interpolate_index_values(self):
        s = Series(np.nan, index=np.sort(np.random.rand(30)))
        s[::3] = np.random.randn(10)

        vals = s.index.values.astype(float)

        result = s.interpolate(method='index')

        expected = s.copy()
        bad = isna(expected.values)
        good = ~bad
        expected = Series(np.interp(vals[bad], vals[good],
                                    s.values[good]),
                          index=s.index[bad])

        assert_series_equal(result[bad], expected)

        # 'values' is synonymous with 'index' for the method kwarg
        other_result = s.interpolate(method='values')

        assert_series_equal(other_result, result)
        assert_series_equal(other_result[bad], expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_missing.py

示例7: test_argsort

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_argsort(self, datetime_series):
        self._check_accum_op('argsort', datetime_series, check_dtype=False)
        argsorted = datetime_series.argsort()
        assert issubclass(argsorted.dtype.type, np.integer)

        # GH 2967 (introduced bug in 0.11-dev I think)
        s = Series([Timestamp('201301%02d' % (i + 1)) for i in range(5)])
        assert s.dtype == 'datetime64[ns]'
        shifted = s.shift(-1)
        assert shifted.dtype == 'datetime64[ns]'
        assert isna(shifted[4])

        result = s.argsort()
        expected = Series(lrange(5), dtype='int64')
        assert_series_equal(result, expected)

        result = shifted.argsort()
        expected = Series(lrange(4) + [-1], dtype='int64')
        assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_analytics.py

示例8: test_cov

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_cov(self, datetime_series):
        # full overlap
        tm.assert_almost_equal(datetime_series.cov(datetime_series),
                               datetime_series.std() ** 2)

        # partial overlap
        tm.assert_almost_equal(datetime_series[:15].cov(datetime_series[5:]),
                               datetime_series[5:15].std() ** 2)

        # No overlap
        assert np.isnan(datetime_series[::2].cov(datetime_series[1::2]))

        # all NA
        cp = datetime_series[:10].copy()
        cp[:] = np.nan
        assert isna(cp.cov(cp))

        # min_periods
        assert isna(datetime_series[:15].cov(datetime_series[5:],
                    min_periods=12))

        ts1 = datetime_series[:15].reindex(datetime_series.index)
        ts2 = datetime_series[5:].reindex(datetime_series.index)
        assert isna(ts1.cov(ts2, min_periods=12)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_analytics.py

示例9: test_clip_types_and_nulls

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_clip_types_and_nulls(self):

        sers = [Series([np.nan, 1.0, 2.0, 3.0]), Series([None, 'a', 'b', 'c']),
                Series(pd.to_datetime(
                    [np.nan, 1, 2, 3], unit='D'))]

        for s in sers:
            thresh = s[2]
            with tm.assert_produces_warning(FutureWarning):
                lower = s.clip_lower(thresh)
            with tm.assert_produces_warning(FutureWarning):
                upper = s.clip_upper(thresh)
            assert lower[notna(lower)].min() == thresh
            assert upper[notna(upper)].max() == thresh
            assert list(isna(s)) == list(isna(lower))
            assert list(isna(s)) == list(isna(upper)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_analytics.py

示例10: test_all_nans

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_all_nans(self):
        # GH 15713
        # series is all nans
        result = Series([np.nan]).asof([0])
        expected = Series([np.nan])
        tm.assert_series_equal(result, expected)

        # testing non-default indexes
        N = 50
        rng = date_range('1/1/1990', periods=N, freq='53s')

        dates = date_range('1/1/1990', periods=N * 3, freq='25s')
        result = Series(np.nan, index=rng).asof(dates)
        expected = Series(np.nan, index=dates)
        tm.assert_series_equal(result, expected)

        # testing scalar input
        date = date_range('1/1/1990', periods=N * 3, freq='25s')[0]
        result = Series(np.nan, index=rng).asof(date)
        assert isna(result)

        # test name is propagated
        result = Series(np.nan, index=[1, 2, 3, 4], name='test').asof([4, 5])
        expected = Series(np.nan, index=[4, 5], name='test')
        tm.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_asof.py

示例11: test_iter

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_iter(self):
        # GH3638
        strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel'
        ds = Series(strs)

        for s in ds.str:
            # iter must yield a Series
            assert isinstance(s, Series)

            # indices of each yielded Series should be equal to the index of
            # the original Series
            tm.assert_index_equal(s.index, ds.index)

            for el in s:
                # each element of the series is either a basestring/str or nan
                assert isinstance(el, compat.string_types) or isna(el)

        # desired behavior is to iterate until everything would be nan on the
        # next iter so make sure the last element of the iterator was 'l' in
        # this case since 'wikitravel' is the longest string
        assert s.dropna().values.item() == 'l' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:23,代碼來源:test_strings.py

示例12: test_strange_column_corruption_issue

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_strange_column_corruption_issue(self):
        # (wesm) Unclear how exactly this is related to internal matters
        df = DataFrame(index=[0, 1])
        df[0] = np.nan
        wasCol = {}
        # uncommenting these makes the results match
        # for col in xrange(100, 200):
        #    wasCol[col] = 1
        #    df[col] = np.nan

        for i, dt in enumerate(df.index):
            for col in range(100, 200):
                if col not in wasCol:
                    wasCol[col] = 1
                    df[col] = np.nan
                df[col][dt] = i

        myid = 100

        first = len(df.loc[pd.isna(df[myid]), [myid]])
        second = len(df.loc[pd.isna(df[myid]), [myid]])
        assert first == second == 0 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_block_internals.py

示例13: test_resample_how_ohlc

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_resample_how_ohlc(series):
    s = series
    grouplist = np.ones_like(s)
    grouplist[0] = 0
    grouplist[1:6] = 1
    grouplist[6:11] = 2
    grouplist[11:] = 3

    def _ohlc(group):
        if isna(group).all():
            return np.repeat(np.nan, 4)
        return [group[0], group.max(), group.min(), group[-1]]

    expected = DataFrame(
        s.groupby(grouplist).agg(_ohlc).values.tolist(),
        index=date_range('1/1/2000', periods=4, freq='5min', name='index'),
        columns=['open', 'high', 'low', 'close'])

    result = s.resample('5min', closed='right', label='right').ohlc()
    assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_datetime_index.py

示例14: test_ohlc_5min

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_ohlc_5min():
    def _ohlc(group):
        if isna(group).all():
            return np.repeat(np.nan, 4)
        return [group[0], group.max(), group.min(), group[-1]]

    rng = date_range('1/1/2000 00:00:00', '1/1/2000 5:59:50', freq='10s')
    ts = Series(np.random.randn(len(rng)), index=rng)

    resampled = ts.resample('5min', closed='right',
                            label='right').ohlc()

    assert (resampled.loc['1/1/2000 00:00'] == ts[0]).all()

    exp = _ohlc(ts[1:31])
    assert (resampled.loc['1/1/2000 00:05'] == exp).all()

    exp = _ohlc(ts['1/1/2000 5:55:01':])
    assert (resampled.loc['1/1/2000 6:00:00'] == exp).all() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_datetime_index.py

示例15: test_var_std

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import isna [as 別名]
def test_var_std(self):
        string_series = tm.makeStringSeries().rename('series')
        datetime_series = tm.makeTimeSeries().rename('ts')

        alt = lambda x: np.std(x, ddof=1)
        self._check_stat_op('std', alt, string_series)

        alt = lambda x: np.var(x, ddof=1)
        self._check_stat_op('var', alt, string_series)

        result = datetime_series.std(ddof=4)
        expected = np.std(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        result = datetime_series.var(ddof=4)
        expected = np.var(datetime_series.values, ddof=4)
        tm.assert_almost_equal(result, expected)

        # 1 - element series with ddof=1
        s = datetime_series.iloc[[0]]
        result = s.var(ddof=1)
        assert pd.isna(result)

        result = s.std(ddof=1)
        assert pd.isna(result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_stat_reductions.py


注:本文中的pandas.isna方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。