當前位置: 首頁>>代碼示例>>Python>>正文


Python errors.ParserWarning方法代碼示例

本文整理匯總了Python中pandas.errors.ParserWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python errors.ParserWarning方法的具體用法?Python errors.ParserWarning怎麽用?Python errors.ParserWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.errors的用法示例。


在下文中一共展示了errors.ParserWarning方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dialect

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dialect(self):
        data = """\
label1,label2,label3
index1,"a,c,e
index2,b,d,f
"""

        dia = csv.excel()
        dia.quoting = csv.QUOTE_NONE
        with tm.assert_produces_warning(ParserWarning):
            df = self.read_csv(StringIO(data), dialect=dia)

        data = '''\
label1,label2,label3
index1,a,c,e
index2,b,d,f
'''
        exp = self.read_csv(StringIO(data))
        exp.replace('a', '"a', inplace=True)
        tm.assert_frame_equal(df, exp) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:dialect.py

示例2: test_dialect_str

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dialect_str(self):
        data = """\
fruit:vegetable
apple:brocolli
pear:tomato
"""
        exp = DataFrame({
            'fruit': ['apple', 'pear'],
            'vegetable': ['brocolli', 'tomato']
        })
        csv.register_dialect('mydialect', delimiter=':')
        with tm.assert_produces_warning(ParserWarning):
            df = self.read_csv(StringIO(data), dialect='mydialect')

        tm.assert_frame_equal(df, exp)
        csv.unregister_dialect('mydialect') 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:18,代碼來源:dialect.py

示例3: test_dtype_with_converters

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dtype_with_converters(all_parsers):
    parser = all_parsers
    data = """a,b
1.1,2.2
1.2,2.3"""

    # Dtype spec ignored if converted specified.
    with tm.assert_produces_warning(ParserWarning):
        result = parser.read_csv(StringIO(data), dtype={"a": "i8"},
                                 converters={"a": lambda x: str(x)})
    expected = DataFrame({"a": ["1.1", "1.2"], "b": [2.2, 2.3]})
    tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_dtypes.py

示例4: test_dialect_conflict_except_delimiter

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dialect_conflict_except_delimiter(all_parsers, custom_dialect,
                                           arg, value):
    # see gh-23761.
    dialect_name, dialect_kwargs = custom_dialect
    parser = all_parsers

    expected = DataFrame({"a": [1], "b": [2]})
    data = "a:b\n1:2"

    warning_klass = None
    kwds = dict()

    # arg=None tests when we pass in the dialect without any other arguments.
    if arg is not None:
        if "value" == "dialect":  # No conflict --> no warning.
            kwds[arg] = dialect_kwargs[arg]
        elif "value" == "default":  # Default --> no warning.
            from pandas.io.parsers import _parser_defaults
            kwds[arg] = _parser_defaults[arg]
        else:  # Non-default + conflict with dialect --> warning.
            warning_klass = ParserWarning
            kwds[arg] = "blah"

    with tm.with_csv_dialect(dialect_name, **dialect_kwargs):
        with tm.assert_produces_warning(warning_klass):
            result = parser.read_csv(StringIO(data),
                                     dialect=dialect_name, **kwds)
            tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:30,代碼來源:test_dialect.py

示例5: test_dialect_conflict

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dialect_conflict(self):
        data = 'a,b\n1,2'
        dialect = 'excel'
        exp = DataFrame({'a': [1], 'b': [2]})

        with tm.assert_produces_warning(None):
            df = self.read_csv(StringIO(data), delimiter=',', dialect=dialect)
            tm.assert_frame_equal(df, exp)

        with tm.assert_produces_warning(ParserWarning):
            df = self.read_csv(StringIO(data), delimiter='.', dialect=dialect)
            tm.assert_frame_equal(df, exp) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:14,代碼來源:dialect.py

示例6: test_dtype_with_converter

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_dtype_with_converter(self):
        data = """a,b
1.1,2.2
1.2,2.3"""
        # dtype spec ignored if converted specified
        with tm.assert_produces_warning(ParserWarning):
            result = self.read_csv(StringIO(data), dtype={'a': 'i8'},
                                   converters={'a': lambda x: str(x)})
        expected = DataFrame({'a': ['1.1', '1.2'], 'b': [2.2, 2.3]})
        tm.assert_frame_equal(result, expected) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:12,代碼來源:dtypes.py

示例7: test_from_csv_sep_none

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def test_from_csv_sep_none(make_csv_file):
    make_csv_file()

    with pytest.warns(ParserWarning):
        pandas_df = pandas.read_csv(TEST_CSV_FILENAME, sep=None)
    with pytest.warns(ParserWarning):
        modin_df = pd.read_csv(TEST_CSV_FILENAME, sep=None)
    df_equals(modin_df, pandas_df) 
開發者ID:modin-project,項目名稱:modin,代碼行數:10,代碼來源:test_io.py

示例8: _convert_to_ndarrays

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose=False,
                             converters=None, dtypes=None):
        result = {}
        for c, values in compat.iteritems(dct):
            conv_f = None if converters is None else converters.get(c, None)
            if isinstance(dtypes, dict):
                cast_type = dtypes.get(c, None)
            else:
                # single dtype or None
                cast_type = dtypes

            if self.na_filter:
                col_na_values, col_na_fvalues = _get_na_values(
                    c, na_values, na_fvalues, self.keep_default_na)
            else:
                col_na_values, col_na_fvalues = set(), set()

            if conv_f is not None:
                # conv_f applied to data before inference
                if cast_type is not None:
                    warnings.warn(("Both a converter and dtype were specified "
                                   "for column {0} - only the converter will "
                                   "be used").format(c), ParserWarning,
                                  stacklevel=7)

                try:
                    values = lib.map_infer(values, conv_f)
                except ValueError:
                    mask = algorithms.isin(
                        values, list(na_values)).view(np.uint8)
                    values = lib.map_infer_mask(values, conv_f, mask)

                cvals, na_count = self._infer_types(
                    values, set(col_na_values) | col_na_fvalues,
                    try_num_bool=False)
            else:
                # skip inference if specified dtype is object
                try_num_bool = not (cast_type and is_string_dtype(cast_type))

                # general type inference and conversion
                cvals, na_count = self._infer_types(
                    values, set(col_na_values) | col_na_fvalues,
                    try_num_bool)

                # type specified in dtype param
                if cast_type and not is_dtype_equal(cvals, cast_type):
                    cvals = self._cast_types(cvals, cast_type, c)

            result[c] = cvals
            if verbose and na_count:
                print('Filled %d NA values in column %s' % (na_count, str(c)))
        return result 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:54,代碼來源:parsers.py

示例9: _convert_to_ndarrays

# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import ParserWarning [as 別名]
def _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose=False,
                             converters=None, dtypes=None):
        result = {}
        for c, values in compat.iteritems(dct):
            conv_f = None if converters is None else converters.get(c, None)
            if isinstance(dtypes, dict):
                cast_type = dtypes.get(c, None)
            else:
                # single dtype or None
                cast_type = dtypes

            if self.na_filter:
                col_na_values, col_na_fvalues = _get_na_values(
                    c, na_values, na_fvalues)
            else:
                col_na_values, col_na_fvalues = set(), set()

            if conv_f is not None:
                # conv_f applied to data before inference
                if cast_type is not None:
                    warnings.warn(("Both a converter and dtype were specified "
                                   "for column {0} - only the converter will "
                                   "be used").format(c), ParserWarning,
                                  stacklevel=7)

                try:
                    values = lib.map_infer(values, conv_f)
                except ValueError:
                    mask = algorithms.isin(
                        values, list(na_values)).view(np.uint8)
                    values = lib.map_infer_mask(values, conv_f, mask)

                cvals, na_count = self._infer_types(
                    values, set(col_na_values) | col_na_fvalues,
                    try_num_bool=False)
            else:
                # skip inference if specified dtype is object
                try_num_bool = not (cast_type and is_string_dtype(cast_type))

                # general type inference and conversion
                cvals, na_count = self._infer_types(
                    values, set(col_na_values) | col_na_fvalues,
                    try_num_bool)

                # type specificed in dtype param
                if cast_type and not is_dtype_equal(cvals, cast_type):
                    cvals = self._cast_types(cvals, cast_type, c)

            if issubclass(cvals.dtype.type, np.integer) and self.compact_ints:
                cvals = lib.downcast_int64(
                    cvals, parsers.na_values,
                    self.use_unsigned)

            result[c] = cvals
            if verbose and na_count:
                print('Filled %d NA values in column %s' % (na_count, str(c)))
        return result 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:59,代碼來源:parsers.py


注:本文中的pandas.errors.ParserWarning方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。