本文整理匯總了Python中pandas.errors.MergeError方法的典型用法代碼示例。如果您正苦於以下問題:Python errors.MergeError方法的具體用法?Python errors.MergeError怎麽用?Python errors.MergeError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.errors
的用法示例。
在下文中一共展示了errors.MergeError方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_star_schema_dataframe
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _get_star_schema_dataframe(dataframes, mdx_engine):
"""Merge all DataFrames as star schema.
:return: star schema DataFrame
"""
fusion = dataframes[mdx_engine.facts]
for df in dataframes.values():
try:
fusion = fusion.merge(df)
except MergeError:
print("No common column")
star_schema_df = mdx_engine.clean_data(fusion, mdx_engine.measures)
return star_schema_df[[col for col in fusion.columns if col.lower()[-3:] != "_id"]]
示例2: construct_star_schema
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def construct_star_schema(self, facts):
"""Construct star schema DataFrame from csv files.
:param facts: Facts table name
:return: star schema DataFrame
"""
# loading facts table
df = pd.read_csv(os.path.join(self.cube_path, facts + ".csv"), sep=self.sep)
for file_name in os.listdir(self.cube_path):
try:
df = df.merge(
pd.read_csv(os.path.join(self.cube_path, file_name), sep=self.sep)
)
except MergeError:
print("No common column")
return df
示例3: _get_cython_type
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _get_cython_type(dtype):
""" Given a dtype, return a C name like 'int64_t' or 'double' """
type_name = _get_dtype(dtype).name
ctype = _cython_types.get(type_name, 'object')
if ctype == 'error':
raise MergeError('unsupported type: {type}'.format(type=type_name))
return ctype
示例4: construct_star_schema
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def construct_star_schema(self, facts):
# type: (Text) -> pd.DataFrame
"""Construct star schema DataFrame from database.
:param facts: Facts table name
:return: star schema DataFrame
"""
df = psql.read_sql_query("SELECT * FROM {}".format(facts), self.sqla_engine)
inspector = inspect(self.sqla_engine)
for db_table_name in inspector.get_table_names():
# try:
# db_table_name = str(db_table_name)
# except Exception:
# if isinstance(db_table_name, Iterable):
# db_table_name = db_table_name[0]
try:
df = df.merge(
psql.read_sql_query(
"SELECT * FROM {}".format(db_table_name), self.sqla_engine
)
)
except MergeError:
print("No common column between {} and {}".format(facts, db_table_name))
return df
示例5: _validate_specification
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _validate_specification(self):
# Hm, any way to make this logic less complicated??
if self.on is None and self.left_on is None and self.right_on is None:
if self.left_index and self.right_index:
self.left_on, self.right_on = (), ()
elif self.left_index:
if self.right_on is None:
raise MergeError('Must pass right_on or right_index=True')
elif self.right_index:
if self.left_on is None:
raise MergeError('Must pass left_on or left_index=True')
else:
# use the common columns
common_cols = self.left.columns.intersection(
self.right.columns)
if len(common_cols) == 0:
raise MergeError(
'No common columns to perform merge on. '
'Merge options: left_on={lon}, right_on={ron}, '
'left_index={lidx}, right_index={ridx}'
.format(lon=self.left_on, ron=self.right_on,
lidx=self.left_index, ridx=self.right_index))
if not common_cols.is_unique:
raise MergeError("Data columns not unique: {common!r}"
.format(common=common_cols))
self.left_on = self.right_on = common_cols
elif self.on is not None:
if self.left_on is not None or self.right_on is not None:
raise MergeError('Can only pass argument "on" OR "left_on" '
'and "right_on", not a combination of both.')
self.left_on = self.right_on = self.on
elif self.left_on is not None:
n = len(self.left_on)
if self.right_index:
if len(self.left_on) != self.right.index.nlevels:
raise ValueError('len(left_on) must equal the number '
'of levels in the index of "right"')
self.right_on = [None] * n
elif self.right_on is not None:
n = len(self.right_on)
if self.left_index:
if len(self.right_on) != self.left.index.nlevels:
raise ValueError('len(right_on) must equal the number '
'of levels in the index of "left"')
self.left_on = [None] * n
if len(self.right_on) != len(self.left_on):
raise ValueError("len(right_on) must equal len(left_on)")
示例6: _validate
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _validate(self, validate):
# Check uniqueness of each
if self.left_index:
left_unique = self.orig_left.index.is_unique
else:
left_unique = MultiIndex.from_arrays(self.left_join_keys
).is_unique
if self.right_index:
right_unique = self.orig_right.index.is_unique
else:
right_unique = MultiIndex.from_arrays(self.right_join_keys
).is_unique
# Check data integrity
if validate in ["one_to_one", "1:1"]:
if not left_unique and not right_unique:
raise MergeError("Merge keys are not unique in either left"
" or right dataset; not a one-to-one merge")
elif not left_unique:
raise MergeError("Merge keys are not unique in left dataset;"
" not a one-to-one merge")
elif not right_unique:
raise MergeError("Merge keys are not unique in right dataset;"
" not a one-to-one merge")
elif validate in ["one_to_many", "1:m"]:
if not left_unique:
raise MergeError("Merge keys are not unique in left dataset;"
" not a one-to-many merge")
elif validate in ["many_to_one", "m:1"]:
if not right_unique:
raise MergeError("Merge keys are not unique in right dataset;"
" not a many-to-one merge")
elif validate in ['many_to_many', 'm:m']:
pass
else:
raise ValueError("Not a valid argument for validate")
示例7: _get_merge_keys
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _get_merge_keys(self):
# note this function has side effects
(left_join_keys,
right_join_keys,
join_names) = super(_AsOfMerge, self)._get_merge_keys()
# validate index types are the same
for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)):
if not is_dtype_equal(lk.dtype, rk.dtype):
raise MergeError("incompatible merge keys [{i}] {lkdtype} and "
"{rkdtype}, must be the same type"
.format(i=i, lkdtype=lk.dtype,
rkdtype=rk.dtype))
# validate tolerance; must be a Timedelta if we have a DTI
if self.tolerance is not None:
if self.left_index:
lt = self.left.index
else:
lt = left_join_keys[-1]
msg = ("incompatible tolerance {tolerance}, must be compat "
"with type {lkdtype}".format(
tolerance=type(self.tolerance),
lkdtype=lt.dtype))
if is_datetime64_dtype(lt) or is_datetime64tz_dtype(lt):
if not isinstance(self.tolerance, Timedelta):
raise MergeError(msg)
if self.tolerance < Timedelta(0):
raise MergeError("tolerance must be positive")
elif is_int64_dtype(lt):
if not is_integer(self.tolerance):
raise MergeError(msg)
if self.tolerance < 0:
raise MergeError("tolerance must be positive")
elif is_float_dtype(lt):
if not is_number(self.tolerance):
raise MergeError(msg)
if self.tolerance < 0:
raise MergeError("tolerance must be positive")
else:
raise MergeError("key must be integer, timestamp or float")
# validate allow_exact_matches
if not is_bool(self.allow_exact_matches):
msg = "allow_exact_matches must be boolean, passed {passed}"
raise MergeError(msg.format(passed=self.allow_exact_matches))
return left_join_keys, right_join_keys, join_names
示例8: _validate
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _validate(self, validate):
# Check uniqueness of each
if self.left_index:
left_unique = self.orig_left.index.is_unique
else:
left_unique = MultiIndex.from_arrays(self.left_join_keys
).is_unique
if self.right_index:
right_unique = self.orig_right.index.is_unique
else:
right_unique = MultiIndex.from_arrays(self.right_join_keys
).is_unique
# Check data integrity
if validate in ["one_to_one", "1:1"]:
if not left_unique and not right_unique:
raise MergeError("Merge keys are not unique in either left"
" or right dataset; not a one-to-one merge")
elif not left_unique:
raise MergeError("Merge keys are not unique in left dataset;"
" not a one-to-one merge")
elif not right_unique:
raise MergeError("Merge keys are not unique in right dataset;"
" not a one-to-one merge")
elif validate in ["one_to_many", "1:m"]:
if not left_unique:
raise MergeError("Merge keys are not unique in left dataset;"
"not a one-to-many merge")
elif validate in ["many_to_one", "m:1"]:
if not right_unique:
raise MergeError("Merge keys are not unique in right dataset;"
" not a many-to-one merge")
elif validate in ['many_to_many', 'm:m']:
pass
else:
raise ValueError("Not a valid argument for validate")
示例9: _get_merge_keys
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _get_merge_keys(self):
# note this function has side effects
(left_join_keys,
right_join_keys,
join_names) = super(_AsOfMerge, self)._get_merge_keys()
# validate index types are the same
for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)):
if not is_dtype_equal(lk.dtype, rk.dtype):
raise MergeError("incompatible merge keys [{i}] {lkdtype} and "
"{rkdtype}, must be the same type"
.format(i=i, lkdtype=lk.dtype,
rkdtype=rk.dtype))
# validate tolerance; must be a Timedelta if we have a DTI
if self.tolerance is not None:
if self.left_index:
lt = self.left.index
else:
lt = left_join_keys[-1]
msg = ("incompatible tolerance {tolerance}, must be compat "
"with type {lkdtype}".format(
tolerance=type(self.tolerance),
lkdtype=lt.dtype))
if is_datetime64_dtype(lt) or is_datetime64tz_dtype(lt):
if not isinstance(self.tolerance, Timedelta):
raise MergeError(msg)
if self.tolerance < Timedelta(0):
raise MergeError("tolerance must be positive")
elif is_int64_dtype(lt):
if not is_integer(self.tolerance):
raise MergeError(msg)
if self.tolerance < 0:
raise MergeError("tolerance must be positive")
else:
raise MergeError("key must be integer or timestamp")
# validate allow_exact_matches
if not is_bool(self.allow_exact_matches):
msg = "allow_exact_matches must be boolean, passed {passed}"
raise MergeError(msg.format(passed=self.allow_exact_matches))
return left_join_keys, right_join_keys, join_names
示例10: _validate_specification
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _validate_specification(self):
# Hm, any way to make this logic less complicated??
if self.on is None and self.left_on is None and self.right_on is None:
if self.left_index and self.right_index:
self.left_on, self.right_on = (), ()
elif self.left_index:
if self.right_on is None:
raise MergeError('Must pass right_on or right_index=True')
elif self.right_index:
if self.left_on is None:
raise MergeError('Must pass left_on or left_index=True')
else:
# use the common columns
common_cols = self.left.columns.intersection(
self.right.columns)
if len(common_cols) == 0:
raise MergeError('No common columns to perform merge on')
if not common_cols.is_unique:
raise MergeError("Data columns not unique: {common!r}"
.format(common=common_cols))
self.left_on = self.right_on = common_cols
elif self.on is not None:
if self.left_on is not None or self.right_on is not None:
raise MergeError('Can only pass argument "on" OR "left_on" '
'and "right_on", not a combination of both.')
self.left_on = self.right_on = self.on
elif self.left_on is not None:
n = len(self.left_on)
if self.right_index:
if len(self.left_on) != self.right.index.nlevels:
raise ValueError('len(left_on) must equal the number '
'of levels in the index of "right"')
self.right_on = [None] * n
elif self.right_on is not None:
n = len(self.right_on)
if self.left_index:
if len(self.right_on) != self.left.index.nlevels:
raise ValueError('len(right_on) must equal the number '
'of levels in the index of "left"')
self.left_on = [None] * n
if len(self.right_on) != len(self.left_on):
raise ValueError("len(right_on) must equal len(left_on)")
示例11: _get_merge_keys
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import MergeError [as 別名]
def _get_merge_keys(self):
# note this function has side effects
(left_join_keys,
right_join_keys,
join_names) = super(_AsOfMerge, self)._get_merge_keys()
# validate index types are the same
for lk, rk in zip(left_join_keys, right_join_keys):
if not is_dtype_equal(lk.dtype, rk.dtype):
raise MergeError("incompatible merge keys, "
"must be the same type")
# validate tolerance; must be a Timedelta if we have a DTI
if self.tolerance is not None:
if self.left_index:
lt = self.left.index
else:
lt = left_join_keys[-1]
msg = "incompatible tolerance, must be compat " \
"with type {lt}".format(lt=type(lt))
if is_datetime64_dtype(lt) or is_datetime64tz_dtype(lt):
if not isinstance(self.tolerance, Timedelta):
raise MergeError(msg)
if self.tolerance < Timedelta(0):
raise MergeError("tolerance must be positive")
elif is_int64_dtype(lt):
if not is_integer(self.tolerance):
raise MergeError(msg)
if self.tolerance < 0:
raise MergeError("tolerance must be positive")
else:
raise MergeError("key must be integer or timestamp")
# validate allow_exact_matches
if not is_bool(self.allow_exact_matches):
msg = "allow_exact_matches must be boolean, passed {passed}"
raise MergeError(msg.format(passed=self.allow_exact_matches))
return left_join_keys, right_join_keys, join_names