本文整理匯總了Python中pandas.errors.EmptyDataError方法的典型用法代碼示例。如果您正苦於以下問題:Python errors.EmptyDataError方法的具體用法?Python errors.EmptyDataError怎麽用?Python errors.EmptyDataError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.errors
的用法示例。
在下文中一共展示了errors.EmptyDataError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_skiprows_callable
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_skiprows_callable(self):
data = 'a\n1\n2\n3\n4\n5'
skiprows = lambda x: x % 2 == 0
expected = DataFrame({'1': [3, 5]})
df = self.read_csv(StringIO(data), skiprows=skiprows)
tm.assert_frame_equal(df, expected)
expected = DataFrame({'foo': [3, 5]})
df = self.read_csv(StringIO(data), skiprows=skiprows,
header=0, names=['foo'])
tm.assert_frame_equal(df, expected)
skiprows = lambda x: True
msg = "No columns to parse from file"
with tm.assert_raises_regex(EmptyDataError, msg):
self.read_csv(StringIO(data), skiprows=skiprows)
# This is a bad callable and should raise.
msg = "by zero"
skiprows = lambda x: 1 / 0
with tm.assert_raises_regex(ZeroDivisionError, msg):
self.read_csv(StringIO(data), skiprows=skiprows)
示例2: test_read_empty_with_usecols
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_read_empty_with_usecols(self):
# See gh-12493
names = ['Dummy', 'X', 'Dummy_2']
usecols = names[1:2] # ['X']
# first, check to see that the response of
# parser when faced with no provided columns
# throws the correct error, with or without usecols
errmsg = "No columns to parse from file"
with tm.assert_raises_regex(EmptyDataError, errmsg):
self.read_csv(StringIO(''))
with tm.assert_raises_regex(EmptyDataError, errmsg):
self.read_csv(StringIO(''), usecols=usecols)
expected = DataFrame(columns=usecols, index=[0], dtype=np.float64)
df = self.read_csv(StringIO(',,'), names=names, usecols=usecols)
tm.assert_frame_equal(df, expected)
expected = DataFrame(columns=usecols)
df = self.read_csv(StringIO(''), names=names, usecols=usecols)
tm.assert_frame_equal(df, expected)
示例3: _read_csv
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def _read_csv(self, filename, without_header=False):
params = {
'delimiter': ';',
'encoding': 'ISO-8859-1',
'quotechar': '"',
# Avoiding converting string to int (nr_cpf_candidato)
'dtype': object
}
if without_header:
params['header'] = None
try:
df = read_csv(filename, **params)
return df
except EmptyDataError:
logging.info(f'{filename} is empty')
return []
示例4: detect_colspecs
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def detect_colspecs(self, n=100, skiprows=None):
# Regex escape the delimiters
delimiters = ''.join([r'\%s' % x for x in self.delimiter])
pattern = re.compile('([^%s]+)' % delimiters)
rows = self.get_rows(n, skiprows)
if not rows:
raise EmptyDataError("No rows from which to infer column width")
max_len = max(map(len, rows))
mask = np.zeros(max_len + 1, dtype=int)
if self.comment is not None:
rows = [row.partition(self.comment)[0] for row in rows]
for row in rows:
for m in pattern.finditer(row):
mask[m.start():m.end()] = 1
shifted = np.roll(mask, 1)
shifted[0] = 0
edges = np.where((mask ^ shifted) == 1)[0]
edge_pairs = list(zip(edges[::2], edges[1::2]))
return edge_pairs
示例5: parse_data
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def parse_data(file_name, company_symbol):
"""
Returns data for the corresponding company
:param file_name: name of the tar file
:param company_symbol: company symbol
:type file_name: str
:type company_symbol: str
:return: dataframe for the corresponding company data
:rtype: pd.DataFrame
"""
tar = tarfile.open(file_name)
try:
price_report = pd.read_csv(tar.extractfile('prices.csv'))
company_price_data = price_report[price_report['symbol']
== company_symbol]
return company_price_data
except (KeyError, pd_errors.EmptyDataError):
return pd.DataFrame()
# Getting the complete data for a given company
示例6: test_read_empty_with_usecols
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_read_empty_with_usecols(all_parsers, data, kwargs, expected):
# see gh-12493
parser = all_parsers
if expected is None:
msg = "No columns to parse from file"
with pytest.raises(EmptyDataError, match=msg):
parser.read_csv(StringIO(data), **kwargs)
else:
result = parser.read_csv(StringIO(data), **kwargs)
tm.assert_frame_equal(result, expected)
示例7: test_raise_on_no_columns
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_raise_on_no_columns(all_parsers, nrows):
parser = all_parsers
data = "\n" * nrows
msg = "No columns to parse from file"
with pytest.raises(EmptyDataError, match=msg):
parser.read_csv(StringIO(data))
示例8: test_skip_rows_skip_all
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_skip_rows_skip_all(all_parsers):
parser = all_parsers
data = "a\n1\n2\n3\n4\n5"
msg = "No columns to parse from file"
with pytest.raises(EmptyDataError, match=msg):
parser.read_csv(StringIO(data), skiprows=lambda x: True)
示例9: test_zero_variables
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_zero_variables(datapath):
# Check if the SAS file has zero variables (PR #18184)
fname = datapath("io", "sas", "data", "zero_variables.sas7bdat")
with pytest.raises(EmptyDataError):
pd.read_sas(fname)
示例10: _parse
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def _parse(flavor, io, match, attrs, encoding, displayed_only, **kwargs):
flavor = _validate_flavor(flavor)
compiled_match = re.compile(match) # you can pass a compiled regex here
# hack around python 3 deleting the exception variable
retained = None
for flav in flavor:
parser = _parser_dispatch(flav)
p = parser(io, compiled_match, attrs, encoding, displayed_only)
try:
tables = p.parse_tables()
except Exception as caught:
# if `io` is an io-like object, check if it's seekable
# and try to rewind it before trying the next parser
if hasattr(io, 'seekable') and io.seekable():
io.seek(0)
elif hasattr(io, 'seekable') and not io.seekable():
# if we couldn't rewind it, let the user know
raise ValueError('The flavor {} failed to parse your input. '
'Since you passed a non-rewindable file '
'object, we can\'t rewind it to try '
'another parser. Try read_html() with a '
'different flavor.'.format(flav))
retained = caught
else:
break
else:
raise_with_traceback(retained)
ret = []
for table in tables:
try:
ret.append(_data_to_frame(data=table, **kwargs))
except EmptyDataError: # empty table
continue
return ret
示例11: test_raise_on_no_columns
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def test_raise_on_no_columns(self):
# single newline
data = "\n"
pytest.raises(EmptyDataError, self.read_csv, StringIO(data))
# test with more than a single newline
data = "\n\n\n"
pytest.raises(EmptyDataError, self.read_csv, StringIO(data))
示例12: read
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def read(self, nrows=None):
if (nrows is None) and (self.chunksize is not None):
nrows = self.chunksize
elif nrows is None:
nrows = self.row_count
if len(self.column_types) == 0:
self.close()
raise EmptyDataError("No columns to parse from file")
if self._current_row_in_file_index >= self.row_count:
return None
m = self.row_count - self._current_row_in_file_index
if nrows > m:
nrows = m
nd = (self.column_types == b'd').sum()
ns = (self.column_types == b's').sum()
self._string_chunk = np.empty((ns, nrows), dtype=np.object)
self._byte_chunk = np.empty((nd, 8 * nrows), dtype=np.uint8)
self._current_row_in_chunk_index = 0
p = Parser(self)
p.read(nrows)
rslt = self._chunk_to_dataframe()
if self.index is not None:
rslt = rslt.set_index(self.index)
return rslt
示例13: get_csv_schema
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def get_csv_schema(filename, buildings):
try:
df = pd.read_csv(filename)
except EmptyDataError:
# csv file is empty
return None
schema = {"columns": {}}
for column_name in df.columns:
column_name = replace_repetitive_column_names(column_name, buildings)
column_name = column_name.encode('ascii', 'ignore')
schema["columns"][column_name] = get_column_schema(df[column_name])
return extract_df_schema(df, buildings)
示例14: get_hardware_utilization
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def get_hardware_utilization(self):
"""Retrieve GPU, CPU and memory utilization data.
Get hardware utilization metrics for entire experiment as a single
`pandas.DataFrame <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
object. Returned DataFrame has following columns (assuming single GPU with 0 index):
* `x_ram` - time (in milliseconds) from the experiment start,
* `y_ram` - memory usage in GB,
* `x_cpu` - time (in milliseconds) from the experiment start,
* `y_cpu` - CPU utilization percentage (0-100),
* `x_gpu_util_0` - time (in milliseconds) from the experiment start,
* `y_gpu_util_0` - GPU utilization percentage (0-100),
* `x_gpu_mem_0` - time (in milliseconds) from the experiment start,
* `y_gpu_mem_0` - GPU memory usage in GB.
| If more GPUs are available they have their separate columns with appropriate indices (0, 1, 2, ...),
for example: `x_gpu_util_1`, `y_gpu_util_1`.
| The returned DataFrame may contain ``NaN`` s if one of the metrics has more values than others.
Returns:
:obj:`pandas.DataFrame` - DataFrame containing the hardware utilization metrics.
Examples:
The following values denote that after 3 seconds, the experiment used 16.7 GB of RAM
* `x_ram` = 3000
* `y_ram` = 16.7
Assuming that `experiment` is an instance of :class:`~neptune.experiments.Experiment`:
.. code:: python3
hardware_df = experiment.get_hardware_utilization()
"""
metrics_csv = self._backend.get_metrics_csv(self)
try:
return pd.read_csv(metrics_csv)
except EmptyDataError:
return pd.DataFrame()
示例15: _parse
# 需要導入模塊: from pandas import errors [as 別名]
# 或者: from pandas.errors import EmptyDataError [as 別名]
def _parse(flavor, io, match, attrs, encoding, **kwargs):
flavor = _validate_flavor(flavor)
compiled_match = re.compile(match) # you can pass a compiled regex here
# hack around python 3 deleting the exception variable
retained = None
for flav in flavor:
parser = _parser_dispatch(flav)
p = parser(io, compiled_match, attrs, encoding)
try:
tables = p.parse_tables()
except Exception as caught:
retained = caught
else:
break
else:
raise_with_traceback(retained)
ret = []
for table in tables:
try:
ret.append(_data_to_frame(data=table, **kwargs))
except EmptyDataError: # empty table
continue
return ret