本文整理匯總了Python中pandas.core.tools.datetimes.to_datetime方法的典型用法代碼示例。如果您正苦於以下問題:Python datetimes.to_datetime方法的具體用法?Python datetimes.to_datetime怎麽用?Python datetimes.to_datetime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.tools.datetimes
的用法示例。
在下文中一共展示了datetimes.to_datetime方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _handle_date_column
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _handle_date_column(col, utc=None, format=None):
if isinstance(format, dict):
return to_datetime(col, errors='ignore', **format)
else:
# Allow passing of formatting string for integers
# GH17855
if format is None and (issubclass(col.dtype.type, np.floating) or
issubclass(col.dtype.type, np.integer)):
format = 's'
if format in ['D', 'd', 'h', 'm', 's', 'ms', 'us', 'ns']:
return to_datetime(col, errors='coerce', unit=format, utc=utc)
elif is_datetime64tz_dtype(col):
# coerce to UTC timezone
# GH11216
return to_datetime(col, utc=True)
else:
return to_datetime(col, errors='coerce', format=format, utc=utc)
示例2: test_parse_tz_aware
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def test_parse_tz_aware(self):
# See gh-1693
import pytz
data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5")
# it works
result = self.read_csv(data, index_col=0, parse_dates=True)
stamp = result.index[0]
assert stamp.minute == 39
try:
assert result.index.tz is pytz.utc
except AssertionError: # hello Yaroslav
arr = result.index.to_pydatetime()
result = tools.to_datetime(arr, utc=True)[0]
assert stamp.minute == result.minute
assert stamp.hour == result.hour
assert stamp.day == result.day
示例3: _handle_date_column
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _handle_date_column(col, utc=None, format=None):
if isinstance(format, dict):
return to_datetime(col, errors='ignore', **format)
else:
# Allow passing of formatting string for integers
# GH17855
if format is None and (issubclass(col.dtype.type, np.floating) or
issubclass(col.dtype.type, np.integer)):
format = 's'
if format in ['D', 'd', 'h', 'm', 's', 'ms', 'us', 'ns']:
return to_datetime(col, errors='coerce', unit=format, utc=utc)
elif is_datetime64tz_dtype(col):
# coerce to UTC timezone
# GH11216
return (to_datetime(col, errors='coerce')
.astype('datetime64[ns, UTC]'))
else:
return to_datetime(col, errors='coerce', format=format, utc=utc)
示例4: _handle_date_column
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _handle_date_column(col, utc=None, format=None):
if isinstance(format, dict):
return to_datetime(col, errors='ignore', **format)
else:
if format in ['D', 's', 'ms', 'us', 'ns']:
return to_datetime(col, errors='coerce', unit=format, utc=utc)
elif (issubclass(col.dtype.type, np.floating) or
issubclass(col.dtype.type, np.integer)):
# parse dates as timestamp
format = 's' if format is None else format
return to_datetime(col, errors='coerce', unit=format, utc=utc)
elif is_datetime64tz_dtype(col):
# coerce to UTC timezone
# GH11216
return (to_datetime(col, errors='coerce')
.astype('datetime64[ns, UTC]'))
else:
return to_datetime(col, errors='coerce', format=format, utc=utc)
示例5: time2num
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def time2num(d):
if isinstance(d, compat.string_types):
parsed = tools.to_datetime(d)
if not isinstance(parsed, datetime):
raise ValueError('Could not parse time {d}'.format(d=d))
return _to_ordinalf(parsed.time())
if isinstance(d, pydt.time):
return _to_ordinalf(d)
return d
示例6: _convert_1d
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return _dt_to_float_ordinal(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date)):
return _dt_to_float_ordinal(values)
elif isinstance(values, np.datetime64):
return _dt_to_float_ordinal(tslibs.Timestamp(values))
elif isinstance(values, pydt.time):
return dates.date2num(values)
elif (is_integer(values) or is_float(values)):
return values
elif isinstance(values, compat.string_types):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index, ABCSeries)):
if isinstance(values, ABCSeries):
# https://github.com/matplotlib/matplotlib/issues/11391
# Series was skipped. Convert to DatetimeIndex to get asi8
values = Index(values)
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com.asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
if isinstance(values, Index):
values = _dt_to_float_ordinal(values)
else:
values = [_dt_to_float_ordinal(x) for x in values]
except Exception:
values = _dt_to_float_ordinal(values)
return values
示例7: test_non_datetimeindex
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def test_non_datetimeindex(self):
dates = to_datetime(['1/1/2000', '1/2/2000', '1/3/2000'])
assert frequencies.infer_freq(dates) == 'D'
示例8: test_combine_first_dt64
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def test_combine_first_dt64(self):
from pandas.core.tools.datetimes import to_datetime
s0 = to_datetime(Series(["2010", np.NaN]))
s1 = to_datetime(Series([np.NaN, "2011"]))
rs = s0.combine_first(s1)
xp = to_datetime(Series(['2010', '2011']))
assert_series_equal(rs, xp)
s0 = to_datetime(Series(["2010", np.NaN]))
s1 = Series([np.NaN, "2011"])
rs = s0.combine_first(s1)
xp = Series([datetime(2010, 1, 1), '2011'])
assert_series_equal(rs, xp)
示例9: _make_date_converter
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _make_date_converter(date_parser=None, dayfirst=False,
infer_datetime_format=False):
def converter(*date_cols):
if date_parser is None:
strs = _concat_date_cols(date_cols)
try:
return tools.to_datetime(
ensure_object(strs),
utc=None,
box=False,
dayfirst=dayfirst,
errors='ignore',
infer_datetime_format=infer_datetime_format
)
except ValueError:
return tools.to_datetime(
parsing.try_parse_dates(strs, dayfirst=dayfirst))
else:
try:
result = tools.to_datetime(
date_parser(*date_cols), errors='ignore')
if isinstance(result, datetime.datetime):
raise Exception('scalar parser')
return result
except Exception:
try:
return tools.to_datetime(
parsing.try_parse_dates(_concat_date_cols(date_cols),
parser=date_parser,
dayfirst=dayfirst),
errors='ignore')
except Exception:
return generic_parser(date_parser, *date_cols)
return converter
示例10: _convert_1d
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return _dt_to_float_ordinal(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date)):
return _dt_to_float_ordinal(values)
elif isinstance(values, np.datetime64):
return _dt_to_float_ordinal(tslib.Timestamp(values))
elif isinstance(values, pydt.time):
return dates.date2num(values)
elif (is_integer(values) or is_float(values)):
return values
elif isinstance(values, compat.string_types):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index)):
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com._asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
if isinstance(values, Index):
values = _dt_to_float_ordinal(values)
else:
values = [_dt_to_float_ordinal(x) for x in values]
except Exception:
values = _dt_to_float_ordinal(values)
return values
示例11: _generate_regular_range
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _generate_regular_range(start, end, periods, freq):
if isinstance(freq, Tick):
stride = freq.nanos
if periods is None:
b = Timestamp(start).value
# cannot just use e = Timestamp(end) + 1 because arange breaks when
# stride is too large, see GH10887
e = (b + (Timestamp(end).value - b) // stride * stride +
stride // 2 + 1)
# end.tz == start.tz by this point due to _generate implementation
tz = start.tz
elif start is not None:
b = Timestamp(start).value
e = b + np.int64(periods) * stride
tz = start.tz
elif end is not None:
e = Timestamp(end).value + stride
b = e - np.int64(periods) * stride
tz = end.tz
else:
raise ValueError("at least 'start' or 'end' should be specified "
"if a 'period' is given.")
data = np.arange(b, e, stride, dtype=np.int64)
data = DatetimeIndex._simple_new(data, None, tz=tz)
else:
if isinstance(start, Timestamp):
start = start.to_pydatetime()
if isinstance(end, Timestamp):
end = end.to_pydatetime()
xdr = generate_range(start=start, end=end,
periods=periods, offset=freq)
dates = list(xdr)
# utc = len(dates) > 0 and dates[0].tzinfo is not None
data = tools.to_datetime(dates)
return data
示例12: _make_date_converter
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _make_date_converter(date_parser=None, dayfirst=False,
infer_datetime_format=False):
def converter(*date_cols):
if date_parser is None:
strs = _concat_date_cols(date_cols)
try:
return tools.to_datetime(
_ensure_object(strs),
utc=None,
box=False,
dayfirst=dayfirst,
errors='ignore',
infer_datetime_format=infer_datetime_format
)
except:
return tools.to_datetime(
parsing.try_parse_dates(strs, dayfirst=dayfirst))
else:
try:
result = tools.to_datetime(
date_parser(*date_cols), errors='ignore')
if isinstance(result, datetime.datetime):
raise Exception('scalar parser')
return result
except Exception:
try:
return tools.to_datetime(
parsing.try_parse_dates(_concat_date_cols(date_cols),
parser=date_parser,
dayfirst=dayfirst),
errors='ignore')
except Exception:
return generic_parser(date_parser, *date_cols)
return converter
示例13: time2num
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def time2num(d):
if isinstance(d, compat.string_types):
parsed = tools.to_datetime(d)
if not isinstance(parsed, datetime):
raise ValueError('Could not parse time %s' % d)
return _to_ordinalf(parsed.time())
if isinstance(d, pydt.time):
return _to_ordinalf(d)
return d
示例14: _convert_1d
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def _convert_1d(values, unit, axis):
def try_parse(values):
try:
return _dt_to_float_ordinal(tools.to_datetime(values))
except Exception:
return values
if isinstance(values, (datetime, pydt.date)):
return _dt_to_float_ordinal(values)
elif isinstance(values, np.datetime64):
return _dt_to_float_ordinal(lib.Timestamp(values))
elif isinstance(values, pydt.time):
return dates.date2num(values)
elif (is_integer(values) or is_float(values)):
return values
elif isinstance(values, compat.string_types):
return try_parse(values)
elif isinstance(values, (list, tuple, np.ndarray, Index)):
if isinstance(values, Index):
values = values.values
if not isinstance(values, np.ndarray):
values = com._asarray_tuplesafe(values)
if is_integer_dtype(values) or is_float_dtype(values):
return values
try:
values = tools.to_datetime(values)
if isinstance(values, Index):
values = _dt_to_float_ordinal(values)
else:
values = [_dt_to_float_ordinal(x) for x in values]
except Exception:
values = _dt_to_float_ordinal(values)
return values
示例15: to_datetime
# 需要導入模塊: from pandas.core.tools import datetimes [as 別名]
# 或者: from pandas.core.tools.datetimes import to_datetime [as 別名]
def to_datetime(self, dayfirst=False):
return self.copy()