當前位置: 首頁>>代碼示例>>Python>>正文


Python Series.sort_values方法代碼示例

本文整理匯總了Python中pandas.core.series.Series.sort_values方法的典型用法代碼示例。如果您正苦於以下問題:Python Series.sort_values方法的具體用法?Python Series.sort_values怎麽用?Python Series.sort_values使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.series.Series的用法示例。


在下文中一共展示了Series.sort_values方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: argsort

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import sort_values [as 別名]
def argsort(self, ascending=True, kind='quicksort', *args, **kwargs):
        """
        Returns the indices that would sort the Categorical instance if
        'sort_values' was called. This function is implemented to provide
        compatibility with numpy ndarray objects.

        While an ordering is applied to the category values, arg-sorting
        in this context refers more to organizing and grouping together
        based on matching category values. Thus, this function can be
        called on an unordered Categorical instance unlike the functions
        'Categorical.min' and 'Categorical.max'.

        Returns
        -------
        argsorted : numpy array

        See also
        --------
        numpy.ndarray.argsort
        """
        ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs)
        result = np.argsort(self._codes.copy(), kind=kind, **kwargs)
        if not ascending:
            result = result[::-1]
        return result 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:27,代碼來源:categorical.py

示例2: _from_inferred_categories

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import sort_values [as 別名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype, true_values=None):
        """
        Construct a Categorical from inferred values.

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------
        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'
        true_values : list, optional
            If none are provided, the default ones are
            "True", "TRUE", and "true."

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)
        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialized type with `dtype` if specified.
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors="coerce")
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors="coerce")
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors="coerce")
            elif dtype.categories.is_boolean():
                if true_values is None:
                    true_values = ["True", "TRUE", "true"]

                cats = cats.isin(true_values)

        if known_categories:
            # Recode from observation order to dtype.categories order.
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # Sort categories and recode for unknown categories.
            unsorted = cats.copy()
            categories = cats.sort_values()

            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:61,代碼來源:categorical.py

示例3: _from_inferred_categories

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import sort_values [as 別名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype):
        """Construct a Categorical from inferred values

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------

        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)

        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialzed type with `dtype` if specified
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors='coerce')
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors='coerce')
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors='coerce')

        if known_categories:
            # recode from observation order to dtype.categories order
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # sort categories and recode for unknown categories
            unsorted = cats.copy()
            categories = cats.sort_values()
            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:53,代碼來源:categorical.py

示例4: _from_inferred_categories

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import sort_values [as 別名]
def _from_inferred_categories(cls, inferred_categories, inferred_codes,
                                  dtype):
        """Construct a Categorical from inferred values

        For inferred categories (`dtype` is None) the categories are sorted.
        For explicit `dtype`, the `inferred_categories` are cast to the
        appropriate type.

        Parameters
        ----------

        inferred_categories : Index
        inferred_codes : Index
        dtype : CategoricalDtype or 'category'

        Returns
        -------
        Categorical
        """
        from pandas import Index, to_numeric, to_datetime, to_timedelta

        cats = Index(inferred_categories)

        known_categories = (isinstance(dtype, CategoricalDtype) and
                            dtype.categories is not None)

        if known_categories:
            # Convert to a specialzed type with `dtype` if specified
            if dtype.categories.is_numeric():
                cats = to_numeric(inferred_categories, errors='coerce')
            elif is_datetime64_dtype(dtype.categories):
                cats = to_datetime(inferred_categories, errors='coerce')
            elif is_timedelta64_dtype(dtype.categories):
                cats = to_timedelta(inferred_categories, errors='coerce')

        if known_categories:
            # recode from observation oder to dtype.categories order
            categories = dtype.categories
            codes = _recode_for_categories(inferred_codes, cats, categories)
        elif not cats.is_monotonic_increasing:
            # sort categories and recode for unknown categories
            unsorted = cats.copy()
            categories = cats.sort_values()
            codes = _recode_for_categories(inferred_codes, unsorted,
                                           categories)
            dtype = CategoricalDtype(categories, ordered=False)
        else:
            dtype = CategoricalDtype(cats, ordered=False)
            codes = inferred_codes

        return cls(codes, dtype=dtype, fastpath=True) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:53,代碼來源:categorical.py


注:本文中的pandas.core.series.Series.sort_values方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。