本文整理匯總了Python中pandas.core.series.Series方法的典型用法代碼示例。如果您正苦於以下問題:Python series.Series方法的具體用法?Python series.Series怎麽用?Python series.Series使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.series
的用法示例。
在下文中一共展示了series.Series方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: xs
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def xs(self, key, axis=0, copy=False):
"""
Returns a row (cross-section) from the SparseDataFrame as a Series
object.
Parameters
----------
key : some index contained in the index
Returns
-------
xs : Series
"""
if axis == 1:
data = self[key]
return data
i = self.index.get_loc(key)
data = self.take([i]).get_values()[0]
return Series(data, index=self.columns)
# ----------------------------------------------------------------------
# Arithmetic-related methods
示例2: _join_index
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _join_index(self, other, how, lsuffix, rsuffix):
if isinstance(other, Series):
if other.name is None:
raise ValueError('Other Series must have a name')
other = SparseDataFrame(
{other.name: other},
default_fill_value=self._default_fill_value)
join_index = self.index.join(other.index, how=how)
this = self.reindex(join_index)
other = other.reindex(join_index)
this, other = this._maybe_rename_join(other, lsuffix, rsuffix)
from pandas import concat
return concat([this, other], axis=1, verify_integrity=True)
示例3: arrays_to_mgr
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def arrays_to_mgr(arrays, arr_names, index, columns, dtype=None):
"""
Segregate Series based on type and coerce into matrices.
Needs to handle a lot of exceptional cases.
"""
# figure out the index, if necessary
if index is None:
index = extract_index(arrays)
else:
index = ensure_index(index)
# don't force copy because getting jammed in an ndarray anyway
arrays = _homogenize(arrays, index, dtype)
# from BlockManager perspective
axes = [ensure_index(columns), index]
return create_block_manager_from_arrays(arrays, arr_names, axes)
示例4: _convert_object_array
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
if columns is None:
columns = ibase.default_index(len(content))
else:
if len(columns) != len(content): # pragma: no cover
# caller's responsibility to check for this...
raise AssertionError('{col:d} columns passed, passed data had '
'{con} columns'.format(col=len(columns),
con=len(content)))
# provide soft conversion of object dtypes
def convert(arr):
if dtype != object and dtype != np.object:
arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
arr = maybe_cast_to_datetime(arr, dtype)
return arr
arrays = [convert(arr) for arr in content]
return arrays, columns
# ---------------------------------------------------------------------
# Series-Based
示例5: _aggregate_series_fast
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _aggregate_series_fast(self, obj, func):
func = self._is_builtin_func(func)
if obj.index._has_complex_internals:
raise TypeError('Incompatible index for Cython grouper')
group_index, _, ngroups = self.group_info
# avoids object / Series creation overhead
dummy = obj._get_values(slice(None, 0)).to_dense()
indexer = get_group_index_sorter(group_index, ngroups)
obj = obj._take(indexer).to_dense()
group_index = algorithms.take_nd(
group_index, indexer, allow_fill=False)
grouper = reduction.SeriesGrouper(obj, func, group_index, ngroups,
dummy)
result, counts = grouper.get_result()
return result, counts
示例6: _aggregate_series_pure_python
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _aggregate_series_pure_python(self, obj, func):
group_index, _, ngroups = self.group_info
counts = np.zeros(ngroups, dtype=int)
result = None
splitter = get_splitter(obj, group_index, ngroups, axis=self.axis)
for label, group in splitter:
res = func(group)
if result is None:
if (isinstance(res, (Series, Index, np.ndarray))):
raise ValueError('Function does not reduce')
result = np.empty(ngroups, dtype='O')
counts[label] = group.shape[0]
result[label] = res
result = lib.maybe_convert_objects(result, try_float=0)
return result, counts
示例7: _str_extract_frame
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _str_extract_frame(arr, pat, flags=0):
"""
For each subject string in the Series, extract groups from the
first match of regular expression pat. This function is called from
str_extract(expand=True), and always returns a DataFrame.
"""
from pandas import DataFrame
regex = re.compile(pat, flags=flags)
groups_or_na = _groups_or_na_fun(regex)
names = dict(zip(regex.groupindex.values(), regex.groupindex.keys()))
columns = [names.get(1 + i, i) for i in range(regex.groups)]
if len(arr) == 0:
return DataFrame(columns=columns, dtype=object)
try:
result_index = arr.index
except AttributeError:
result_index = None
return DataFrame(
[groups_or_na(val) for val in arr],
columns=columns,
index=result_index,
dtype=object)
示例8: str_slice
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def str_slice(arr, start=None, stop=None, step=None):
"""
Slice substrings from each element in the Series/Index
Parameters
----------
start : int or None
stop : int or None
step : int or None
Returns
-------
sliced : Series/Index of objects
"""
obj = slice(start, stop, step)
f = lambda x: x[obj]
return _na_map(f, arr)
示例9: str_strip
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def str_strip(arr, to_strip=None, side='both'):
"""
Strip whitespace (including newlines) from each string in the
Series/Index.
Parameters
----------
to_strip : str or unicode
side : {'left', 'right', 'both'}, default 'both'
Returns
-------
stripped : Series/Index of objects
"""
if side == 'both':
f = lambda x: x.strip(to_strip)
elif side == 'left':
f = lambda x: x.lstrip(to_strip)
elif side == 'right':
f = lambda x: x.rstrip(to_strip)
else: # pragma: no cover
raise ValueError('Invalid side')
return _na_map(f, arr)
示例10: str_encode
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def str_encode(arr, encoding, errors="strict"):
"""
Encode character string in the Series/Index using indicated encoding.
Equivalent to :meth:`str.encode`.
Parameters
----------
encoding : str
errors : str, optional
Returns
-------
encoded : Series/Index of objects
"""
if encoding in _cpython_optimized_encoders:
# CPython optimized implementation
f = lambda x: x.encode(encoding, errors)
else:
encoder = codecs.getencoder(encoding)
f = lambda x: encoder(x, errors)[0]
return _na_map(f, arr)
示例11: zfill
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def zfill(self, width):
"""
Filling left side of strings in the Series/Index with 0.
Equivalent to :meth:`str.zfill`.
Parameters
----------
width : int
Minimum width of resulting string; additional characters will be
filled with 0
Returns
-------
filled : Series/Index of objects
"""
result = str_pad(self._data, width, side='left', fillchar='0')
return self._wrap_result(result)
示例12: normalize
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def normalize(self, form):
"""Return the Unicode normal form for the strings in the Series/Index.
For more information on the forms, see the
:func:`unicodedata.normalize`.
Parameters
----------
form : {'NFC', 'NFKC', 'NFD', 'NFKD'}
Unicode form
Returns
-------
normalized : Series/Index of objects
"""
import unicodedata
f = lambda x: unicodedata.normalize(form, compat.u_safe(x))
result = _na_map(f, self._data)
return self._wrap_result(result)
示例13: xs
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def xs(self, key, axis=0, copy=False):
"""
Returns a row (cross-section) from the SparseDataFrame as a Series
object.
Parameters
----------
key : some index contained in the index
Returns
-------
xs : Series
"""
if axis == 1:
data = self[key]
return data
i = self.index.get_loc(key)
data = self.take([i]).get_values()[0]
return Series(data, index=self.columns)
#----------------------------------------------------------------------
# Arithmetic-related methods
示例14: _join_index
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _join_index(self, other, how, lsuffix, rsuffix):
if isinstance(other, Series):
if other.name is None:
raise ValueError('Other Series must have a name')
other = SparseDataFrame({other.name: other},
default_fill_value=self._default_fill_value)
join_index = self.index.join(other.index, how=how)
this = self.reindex(join_index)
other = other.reindex(join_index)
this, other = this._maybe_rename_join(other, lsuffix, rsuffix)
from pandas import concat
return concat([this, other], axis=1, verify_integrity=True)
示例15: _iter_data
# 需要導入模塊: from pandas.core import series [as 別名]
# 或者: from pandas.core.series import Series [as 別名]
def _iter_data(self):
from pandas.core.frame import DataFrame
if isinstance(self.data, (Series, np.ndarray)):
yield self.label, np.asarray(self.data)
elif isinstance(self.data, DataFrame):
df = self.data
if self.sort_columns:
columns = com._try_sort(df.columns)
else:
columns = df.columns
for col in columns:
# # is this right?
# empty = df[col].count() == 0
# values = df[col].values if not empty else np.zeros(len(df))
values = df[col].values
yield col, values