當前位置: 首頁>>代碼示例>>Python>>正文


Python Series.cat方法代碼示例

本文整理匯總了Python中pandas.core.series.Series.cat方法的典型用法代碼示例。如果您正苦於以下問題:Python Series.cat方法的具體用法?Python Series.cat怎麽用?Python Series.cat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.series.Series的用法示例。


在下文中一共展示了Series.cat方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_ordered

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def set_ordered(self, value, inplace=False):
        """
        Sets the ordered attribute to the boolean value

        Parameters
        ----------
        value : boolean to set whether this categorical is ordered (True) or
           not (False)
        inplace : boolean (default: False)
           Whether or not to set the ordered attribute inplace or return a copy
           of this categorical with ordered set to the value
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        new_dtype = CategoricalDtype(self.categories, ordered=value)
        cat = self if inplace else self.copy()
        cat._dtype = new_dtype
        if not inplace:
            return cat 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:categorical.py

示例2: value_counts

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def value_counts(self, dropna=True):
        """
        Returns a Series containing counts of each category.

        Every category will have an entry, even those with a count of 0.

        Parameters
        ----------
        dropna : boolean, default True
            Don't include counts of NaN.

        Returns
        -------
        counts : Series

        See Also
        --------
        Series.value_counts

        """
        from numpy import bincount
        from pandas import Series, CategoricalIndex

        code, cat = self._codes, self.categories
        ncat, mask = len(cat), 0 <= code
        ix, clean = np.arange(ncat), mask.all()

        if dropna or clean:
            obs = code if clean else code[mask]
            count = bincount(obs, minlength=ncat or None)
        else:
            count = bincount(np.where(mask, code, ncat))
            ix = np.append(ix, -1)

        ix = self._constructor(ix, dtype=self.dtype,
                               fastpath=True)

        return Series(count, index=CategoricalIndex(ix), dtype='int64') 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:40,代碼來源:categorical.py

示例3: _validate

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def _validate(data):
        if not is_categorical_dtype(data.dtype):
            raise AttributeError("Can only use .cat accessor with a "
                                 "'category' dtype") 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:6,代碼來源:categorical.py

示例4: name

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def name(self):
        # Note: Upon deprecation, `test_tab_completion_with_categorical` will
        # need to be updated. `name` will need to be removed from
        # `ok_for_cat`.
        warn("`Series.cat.name` has been deprecated. Use `Series.name` "
             "instead.",
             FutureWarning,
             stacklevel=2)
        return self._name 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:categorical.py

示例5: index

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def index(self):
        # Note: Upon deprecation, `test_tab_completion_with_categorical` will
        # need to be updated. `index` will need to be removed from
        # ok_for_cat`.
        warn("`Series.cat.index` has been deprecated. Use `Series.index` "
             "instead.",
             FutureWarning,
             stacklevel=2)
        return self._index

# utility routines 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:13,代碼來源:categorical.py

示例6: _factorize_from_iterable

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def _factorize_from_iterable(values):
    """
    Factorize an input `values` into `categories` and `codes`. Preserves
    categorical dtype in `categories`.

    *This is an internal function*

    Parameters
    ----------
    values : list-like

    Returns
    -------
    codes : ndarray
    categories : Index
        If `values` has a categorical dtype, then `categories` is
        a CategoricalIndex keeping the categories and order of `values`.
    """
    from pandas.core.indexes.category import CategoricalIndex

    if not is_list_like(values):
        raise TypeError("Input must be list-like")

    if is_categorical(values):
        if isinstance(values, (ABCCategoricalIndex, ABCSeries)):
            values = values._values
        categories = CategoricalIndex(values.categories,
                                      categories=values.categories,
                                      ordered=values.ordered)
        codes = values.codes
    else:
        # The value of ordered is irrelevant since we don't use cat as such,
        # but only the resulting categories, the order of which is independent
        # from ordered. Set ordered to False as default. See GH #15457
        cat = Categorical(values, ordered=False)
        categories = cat.categories
        codes = cat.codes
    return codes, categories 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:40,代碼來源:categorical.py

示例7: reorder_categories

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def reorder_categories(self, new_categories, ordered=None, inplace=False):
        """ Reorders categories as specified in new_categories.

        `new_categories` need to include all old categories and no new category
        items.

        Raises
        ------
        ValueError
            If the new categories do not contain all old category items or any
            new ones

        Parameters
        ----------
        new_categories : Index-like
           The categories in new order.
        ordered : boolean, optional
           Whether or not the categorical is treated as a ordered categorical.
           If not given, do not change the ordered information.
        inplace : boolean (default: False)
           Whether or not to reorder the categories inplace or return a copy of
           this categorical with reordered categories.

        Returns
        -------
        cat : Categorical with reordered categories or None if inplace.

        See also
        --------
        rename_categories
        add_categories
        remove_categories
        remove_unused_categories
        set_categories
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        if set(self.dtype.categories) != set(new_categories):
            raise ValueError("items in new_categories are not the same as in "
                             "old categories")
        return self.set_categories(new_categories, ordered=ordered,
                                   inplace=inplace) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:43,代碼來源:categorical.py

示例8: remove_unused_categories

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def remove_unused_categories(self, inplace=False):
        """ Removes categories which are not used.

        Parameters
        ----------
        inplace : boolean (default: False)
           Whether or not to drop unused categories inplace or return a copy of
           this categorical with unused categories dropped.

        Returns
        -------
        cat : Categorical with unused categories dropped or None if inplace.

        See also
        --------
        rename_categories
        reorder_categories
        add_categories
        remove_categories
        set_categories
        """
        inplace = validate_bool_kwarg(inplace, 'inplace')
        cat = self if inplace else self.copy()
        idx, inv = np.unique(cat._codes, return_inverse=True)

        if idx.size != 0 and idx[0] == -1:  # na sentinel
            idx, inv = idx[1:], inv - 1

        new_categories = cat.dtype.categories.take(idx)
        new_dtype = CategoricalDtype._from_fastpath(new_categories,
                                                    ordered=self.ordered)
        cat._dtype = new_dtype
        cat._codes = coerce_indexer_dtype(inv, new_dtype.categories)

        if not inplace:
            return cat 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:38,代碼來源:categorical.py

示例9: _factorize_from_iterable

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def _factorize_from_iterable(values):
    """
    Factorize an input `values` into `categories` and `codes`. Preserves
    categorical dtype in `categories`.

    *This is an internal function*

    Parameters
    ----------
    values : list-like

    Returns
    -------
    codes : ndarray
    categories : Index
        If `values` has a categorical dtype, then `categories` is
        a CategoricalIndex keeping the categories and order of `values`.
    """
    from pandas.core.indexes.category import CategoricalIndex

    if not is_list_like(values):
        raise TypeError("Input must be list-like")

    if is_categorical(values):
        if isinstance(values, (ABCCategoricalIndex, ABCSeries)):
            values = values._values
        categories = CategoricalIndex(values.categories,
                                      categories=values.categories,
                                      ordered=values.ordered)
        codes = values.codes
    else:
        cat = Categorical(values, ordered=True)
        categories = cat.categories
        codes = cat.codes
    return codes, categories 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:37,代碼來源:categorical.py

示例10: _codes_for_groupby

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def _codes_for_groupby(self, sort):
        """
        If sort=False, return a copy of self, coded with categories as
        returned by .unique(), followed by any categories not appearing in
        the data. If sort=True, return self.

        This method is needed solely to ensure the categorical index of the
        GroupBy result has categories in the order of appearance in the data
        (GH-8868).

        Parameters
        ----------
        sort : boolean
            The value of the sort paramter groupby was called with.

        Returns
        -------
        Categorical
            If sort=False, the new categories are set to the order of
            appearance in codes (unless ordered=True, in which case the
            original order is preserved), followed by any unrepresented
            categories in the original order.
        """

        # Already sorted according to self.categories; all is fine
        if sort:
            return self

        # sort=False should order groups in as-encountered order (GH-8868)
        cat = self.unique()

        # But for groupby to work, all categories should be present,
        # including those missing from the data (GH-13179), which .unique()
        # above dropped
        cat.add_categories(
            self.categories[~self.categories.isin(cat.categories)],
            inplace=True)

        return self.reorder_categories(cat.categories) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:41,代碼來源:categorical.py

示例11: value_counts

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def value_counts(self, dropna=True):
        """
        Returns a Series containing counts of each category.

        Every category will have an entry, even those with a count of 0.

        Parameters
        ----------
        dropna : boolean, default True
            Don't include counts of NaN, even if NaN is a category.

        Returns
        -------
        counts : Series

        See Also
        --------
        Series.value_counts

        """
        from numpy import bincount
        from pandas import isna, Series, CategoricalIndex

        obj = (self.remove_categories([np.nan]) if dropna and
               isna(self.categories).any() else self)
        code, cat = obj._codes, obj.categories
        ncat, mask = len(cat), 0 <= code
        ix, clean = np.arange(ncat), mask.all()

        if dropna or clean:
            obs = code if clean else code[mask]
            count = bincount(obs, minlength=ncat or None)
        else:
            count = bincount(np.where(mask, code, ncat))
            ix = np.append(ix, -1)

        ix = self._constructor(ix, dtype=self.dtype,
                               fastpath=True)

        return Series(count, index=CategoricalIndex(ix), dtype='int64') 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:42,代碼來源:categorical.py

示例12: repeat

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def repeat(self, repeats, *args, **kwargs):
        """
        Repeat elements of a Categorical.

        See also
        --------
        numpy.ndarray.repeat

        """
        nv.validate_repeat(args, kwargs)
        codes = self._codes.repeat(repeats)
        return self._constructor(values=codes, categories=self.categories,
                                 ordered=self.ordered, fastpath=True)

# The Series.cat accessor 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:17,代碼來源:categorical.py

示例13: _make_accessor

# 需要導入模塊: from pandas.core.series import Series [as 別名]
# 或者: from pandas.core.series.Series import cat [as 別名]
def _make_accessor(cls, data):
        if not is_categorical_dtype(data.dtype):
            raise AttributeError("Can only use .cat accessor with a "
                                 "'category' dtype")
        return CategoricalAccessor(data.values, data.index,
                                   getattr(data, 'name', None),) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:8,代碼來源:categorical.py


注:本文中的pandas.core.series.Series.cat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。