本文整理匯總了Python中pandas.core.panel.Panel.from_dict方法的典型用法代碼示例。如果您正苦於以下問題:Python Panel.from_dict方法的具體用法?Python Panel.from_dict怎麽用?Python Panel.from_dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.panel.Panel
的用法示例。
在下文中一共展示了Panel.from_dict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_ctor_orderedDict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_ctor_orderedDict(self):
keys = list(set(np.random.randint(0, 5000, 100)))[
:50] # unique random int keys
d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
p = Panel(d)
assert list(p.items) == keys
p = Panel.from_dict(d)
assert list(p.items) == keys
示例2: test_from_dict_mixed_orient
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_from_dict_mixed_orient(self):
df = tm.makeDataFrame()
df['foo'] = 'bar'
data = {'k1': df, 'k2': df}
panel = Panel.from_dict(data, orient='minor')
assert panel['foo'].values.dtype == np.object_
assert panel['A'].values.dtype == np.float64
示例3: test_shift
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_shift(self):
# major
idx = self.panel.major_axis[0]
idx_lag = self.panel.major_axis[1]
shifted = self.panel.shift(1)
assert_frame_equal(self.panel.major_xs(idx),
shifted.major_xs(idx_lag))
# minor
idx = self.panel.minor_axis[0]
idx_lag = self.panel.minor_axis[1]
shifted = self.panel.shift(1, axis='minor')
assert_frame_equal(self.panel.minor_xs(idx),
shifted.minor_xs(idx_lag))
# items
idx = self.panel.items[0]
idx_lag = self.panel.items[1]
shifted = self.panel.shift(1, axis='items')
assert_frame_equal(self.panel[idx], shifted[idx_lag])
# negative numbers, #2164
result = self.panel.shift(-1)
expected = Panel({i: f.shift(-1)[:-1]
for i, f in self.panel.iteritems()})
assert_panel_equal(result, expected)
# mixed dtypes #6959
data = [('item ' + ch, makeMixedDataFrame())
for ch in list('abcde')]
data = dict(data)
mixed_panel = Panel.from_dict(data, orient='minor')
shifted = mixed_panel.shift(1)
assert_series_equal(mixed_panel.dtypes, shifted.dtypes)
示例4: test_ctor_orderedDict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_ctor_orderedDict(self):
with catch_warnings(record=True):
keys = list(set(np.random.randint(0, 5000, 100)))[
:50] # unique random int keys
d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
p = Panel(d)
assert list(p.items) == keys
p = Panel.from_dict(d)
assert list(p.items) == keys
示例5: test_from_dict_mixed_orient
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_from_dict_mixed_orient(self):
with catch_warnings(record=True):
df = tm.makeDataFrame()
df['foo'] = 'bar'
data = {'k1': df, 'k2': df}
panel = Panel.from_dict(data, orient='minor')
assert panel['foo'].values.dtype == np.object_
assert panel['A'].values.dtype == np.float64
示例6: test_shift
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_shift(self):
with catch_warnings(record=True):
# major
idx = self.panel.major_axis[0]
idx_lag = self.panel.major_axis[1]
shifted = self.panel.shift(1)
assert_frame_equal(self.panel.major_xs(idx),
shifted.major_xs(idx_lag))
# minor
idx = self.panel.minor_axis[0]
idx_lag = self.panel.minor_axis[1]
shifted = self.panel.shift(1, axis='minor')
assert_frame_equal(self.panel.minor_xs(idx),
shifted.minor_xs(idx_lag))
# items
idx = self.panel.items[0]
idx_lag = self.panel.items[1]
shifted = self.panel.shift(1, axis='items')
assert_frame_equal(self.panel[idx], shifted[idx_lag])
# negative numbers, #2164
result = self.panel.shift(-1)
expected = Panel({i: f.shift(-1)[:-1]
for i, f in self.panel.iteritems()})
assert_panel_equal(result, expected)
# mixed dtypes #6959
data = [('item ' + ch, makeMixedDataFrame())
for ch in list('abcde')]
data = dict(data)
mixed_panel = Panel.from_dict(data, orient='minor')
shifted = mixed_panel.shift(1)
assert_series_equal(mixed_panel.dtypes, shifted.dtypes)
示例7: from_dict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def from_dict(cls, data):
"""
Analogous to Panel.from_dict
"""
return SparsePanel(data)
示例8: var_beta
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def var_beta(self):
"""Returns the covariance of beta."""
result = {}
result_index = self._result_index
for i in range(len(self._var_beta_raw)):
dm = DataFrame(self._var_beta_raw[i], columns=self.beta.columns,
index=self.beta.columns)
result[result_index[i]] = dm
return Panel.from_dict(result, intersect=False)
示例9: test_shift
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_shift(self):
with catch_warnings(record=True):
# major
idx = self.panel.major_axis[0]
idx_lag = self.panel.major_axis[1]
shifted = self.panel.shift(1)
assert_frame_equal(self.panel.major_xs(idx),
shifted.major_xs(idx_lag))
# minor
idx = self.panel.minor_axis[0]
idx_lag = self.panel.minor_axis[1]
shifted = self.panel.shift(1, axis='minor')
assert_frame_equal(self.panel.minor_xs(idx),
shifted.minor_xs(idx_lag))
# items
idx = self.panel.items[0]
idx_lag = self.panel.items[1]
shifted = self.panel.shift(1, axis='items')
assert_frame_equal(self.panel[idx], shifted[idx_lag])
# negative numbers, #2164
result = self.panel.shift(-1)
expected = Panel(dict((i, f.shift(-1)[:-1])
for i, f in self.panel.iteritems()))
assert_panel_equal(result, expected)
# mixed dtypes #6959
data = [('item ' + ch, makeMixedDataFrame())
for ch in list('abcde')]
data = dict(data)
mixed_panel = Panel.from_dict(data, orient='minor')
shifted = mixed_panel.shift(1)
assert_series_equal(mixed_panel.dtypes, shifted.dtypes)
示例10: test_constructor_dtypes
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_constructor_dtypes(self):
# GH #797
def _check_dtype(panel, dtype):
for i in panel.items:
assert panel[i].values.dtype.name == dtype
# only nan holding types allowed here
for dtype in ['float64', 'float32', 'object']:
panel = Panel(items=lrange(2), major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(
np.random.randn(2, 10, 5),
items=lrange(2), major_axis=lrange(10),
minor_axis=lrange(5),
dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
df1 = DataFrame(np.random.randn(2, 5),
index=lrange(2), columns=lrange(5))
df2 = DataFrame(np.random.randn(2, 5),
index=lrange(2), columns=lrange(5))
panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype)
_check_dtype(panel, dtype)
示例11: test_ctor_dict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_ctor_dict(self):
itema = self.panel['ItemA']
itemb = self.panel['ItemB']
d = {'A': itema, 'B': itemb[5:]}
d2 = {'A': itema._series, 'B': itemb[5:]._series}
d3 = {'A': None,
'B': DataFrame(itemb[5:]._series),
'C': DataFrame(itema._series)}
wp = Panel.from_dict(d)
wp2 = Panel.from_dict(d2) # nested Dict
# TODO: unused?
wp3 = Panel.from_dict(d3) # noqa
tm.assert_index_equal(wp.major_axis, self.panel.major_axis)
assert_panel_equal(wp, wp2)
# intersect
wp = Panel.from_dict(d, intersect=True)
tm.assert_index_equal(wp.major_axis, itemb.index[5:])
# use constructor
assert_panel_equal(Panel(d), Panel.from_dict(d))
assert_panel_equal(Panel(d2), Panel.from_dict(d2))
assert_panel_equal(Panel(d3), Panel.from_dict(d3))
# a pathological case
d4 = {'A': None, 'B': None}
# TODO: unused?
wp4 = Panel.from_dict(d4) # noqa
assert_panel_equal(Panel(d4), Panel(items=['A', 'B']))
# cast
dcasted = {k: v.reindex(wp.major_axis).fillna(0)
for k, v in compat.iteritems(d)}
result = Panel(dcasted, dtype=int)
expected = Panel({k: v.astype(int)
for k, v in compat.iteritems(dcasted)})
assert_panel_equal(result, expected)
result = Panel(dcasted, dtype=np.int32)
expected = Panel({k: v.astype(np.int32)
for k, v in compat.iteritems(dcasted)})
assert_panel_equal(result, expected)
示例12: test_constructor_dtypes
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_constructor_dtypes(self):
with catch_warnings(record=True):
# GH #797
def _check_dtype(panel, dtype):
for i in panel.items:
assert panel[i].values.dtype.name == dtype
# only nan holding types allowed here
for dtype in ['float64', 'float32', 'object']:
panel = Panel(items=lrange(2), major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'),
items=lrange(2),
major_axis=lrange(10),
minor_axis=lrange(5), dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
panel = Panel(
np.random.randn(2, 10, 5),
items=lrange(2), major_axis=lrange(10),
minor_axis=lrange(5),
dtype=dtype)
_check_dtype(panel, dtype)
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
df1 = DataFrame(np.random.randn(2, 5),
index=lrange(2), columns=lrange(5))
df2 = DataFrame(np.random.randn(2, 5),
index=lrange(2), columns=lrange(5))
panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype)
_check_dtype(panel, dtype)
示例13: test_ctor_dict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_ctor_dict(self):
with catch_warnings(record=True):
itema = self.panel['ItemA']
itemb = self.panel['ItemB']
d = {'A': itema, 'B': itemb[5:]}
d2 = {'A': itema._series, 'B': itemb[5:]._series}
d3 = {'A': None,
'B': DataFrame(itemb[5:]._series),
'C': DataFrame(itema._series)}
wp = Panel.from_dict(d)
wp2 = Panel.from_dict(d2) # nested Dict
# TODO: unused?
wp3 = Panel.from_dict(d3) # noqa
tm.assert_index_equal(wp.major_axis, self.panel.major_axis)
assert_panel_equal(wp, wp2)
# intersect
wp = Panel.from_dict(d, intersect=True)
tm.assert_index_equal(wp.major_axis, itemb.index[5:])
# use constructor
assert_panel_equal(Panel(d), Panel.from_dict(d))
assert_panel_equal(Panel(d2), Panel.from_dict(d2))
assert_panel_equal(Panel(d3), Panel.from_dict(d3))
# a pathological case
d4 = {'A': None, 'B': None}
# TODO: unused?
wp4 = Panel.from_dict(d4) # noqa
assert_panel_equal(Panel(d4), Panel(items=['A', 'B']))
# cast
dcasted = {k: v.reindex(wp.major_axis).fillna(0)
for k, v in compat.iteritems(d)}
result = Panel(dcasted, dtype=int)
expected = Panel({k: v.astype(int)
for k, v in compat.iteritems(dcasted)})
assert_panel_equal(result, expected)
result = Panel(dcasted, dtype=np.int32)
expected = Panel({k: v.astype(np.int32)
for k, v in compat.iteritems(dcasted)})
assert_panel_equal(result, expected)
示例14: _filter_data
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def _filter_data(self):
"""
"""
data = self._x_orig
cat_mapping = {}
if isinstance(data, DataFrame):
data = data.to_panel()
else:
if isinstance(data, Panel):
data = data.copy()
if not isinstance(data, SparsePanel):
data, cat_mapping = self._convert_x(data)
if not isinstance(data, Panel):
data = Panel.from_dict(data, intersect=True)
x_names = data.items
if self._weights is not None:
data['__weights__'] = self._weights
# Filter x's without y (so we can make a prediction)
filtered = data.to_frame()
# Filter all data together using to_frame
# convert to DataFrame
y = self._y_orig
if isinstance(y, Series):
y = y.unstack()
data['__y__'] = y
data_long = data.to_frame()
x_filt = filtered.filter(x_names)
x = data_long.filter(x_names)
y = data_long['__y__']
if self._weights is not None and not self._weights.empty:
weights = data_long['__weights__']
else:
weights = None
return x, x_filt, y, weights, cat_mapping
示例15: test_ctor_dict
# 需要導入模塊: from pandas.core.panel import Panel [as 別名]
# 或者: from pandas.core.panel.Panel import from_dict [as 別名]
def test_ctor_dict(self):
with catch_warnings(record=True):
itema = self.panel['ItemA']
itemb = self.panel['ItemB']
d = {'A': itema, 'B': itemb[5:]}
d2 = {'A': itema._series, 'B': itemb[5:]._series}
d3 = {'A': None,
'B': DataFrame(itemb[5:]._series),
'C': DataFrame(itema._series)}
wp = Panel.from_dict(d)
wp2 = Panel.from_dict(d2) # nested Dict
# TODO: unused?
wp3 = Panel.from_dict(d3) # noqa
tm.assert_index_equal(wp.major_axis, self.panel.major_axis)
assert_panel_equal(wp, wp2)
# intersect
wp = Panel.from_dict(d, intersect=True)
tm.assert_index_equal(wp.major_axis, itemb.index[5:])
# use constructor
assert_panel_equal(Panel(d), Panel.from_dict(d))
assert_panel_equal(Panel(d2), Panel.from_dict(d2))
assert_panel_equal(Panel(d3), Panel.from_dict(d3))
# a pathological case
d4 = {'A': None, 'B': None}
# TODO: unused?
wp4 = Panel.from_dict(d4) # noqa
assert_panel_equal(Panel(d4), Panel(items=['A', 'B']))
# cast
dcasted = dict((k, v.reindex(wp.major_axis).fillna(0))
for k, v in compat.iteritems(d))
result = Panel(dcasted, dtype=int)
expected = Panel(dict((k, v.astype(int))
for k, v in compat.iteritems(dcasted)))
assert_panel_equal(result, expected)
result = Panel(dcasted, dtype=np.int32)
expected = Panel(dict((k, v.astype(np.int32))
for k, v in compat.iteritems(dcasted)))
assert_panel_equal(result, expected)