當前位置: 首頁>>代碼示例>>Python>>正文


Python internals.make_block方法代碼示例

本文整理匯總了Python中pandas.core.internals.make_block方法的典型用法代碼示例。如果您正苦於以下問題:Python internals.make_block方法的具體用法?Python internals.make_block怎麽用?Python internals.make_block使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.internals的用法示例。


在下文中一共展示了internals.make_block方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: count

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def count(self):
        """ Compute count of group, excluding missing values """
        from pandas.core.dtypes.missing import _isna_ndarraylike as _isna

        data, _ = self._get_data_to_aggregate()
        ids, _, ngroups = self.grouper.group_info
        mask = ids != -1

        val = ((mask & ~_isna(np.atleast_2d(blk.get_values())))
               for blk in data.blocks)
        loc = (blk.mgr_locs for blk in data.blocks)

        counter = partial(
            lib.count_level_2d, labels=ids, max_bin=ngroups, axis=1)
        blk = map(make_block, map(counter, val), loc)

        return self._wrap_agged_blocks(data.items, list(blk)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:generic.py

示例2: count

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def count(self):
        """ Compute count of group, excluding missing values """
        from pandas.core.dtypes.missing import _isna_ndarraylike as isna

        data, _ = self._get_data_to_aggregate()
        ids, _, ngroups = self.grouper.group_info
        mask = ids != -1

        val = ((mask & ~isna(np.atleast_2d(blk.get_values())))
               for blk in data.blocks)
        loc = (blk.mgr_locs for blk in data.blocks)

        counter = partial(count_level_2d, labels=ids, max_bin=ngroups, axis=1)
        blk = map(make_block, map(counter, val), loc)

        return self._wrap_agged_blocks(data.items, list(blk)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:18,代碼來源:groupby.py

示例3: read

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def read(self, **kwargs):
        self.validate_read(kwargs)

        axes = []
        for i in range(self.ndim):
            ax = self.read_index('axis%d' % i)
            axes.append(ax)

        items = axes[0]
        blocks = []
        for i in range(self.nblocks):
            blk_items = self.read_index('block%d_items' % i)
            values = self.read_array('block%d_values' % i)
            blk = make_block(values, blk_items, items)
            blocks.append(blk)

        return self.obj_type(BlockManager(blocks, axes)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:pytables.py

示例4: count

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def count(self):
        """ Compute count of group, excluding missing values """
        from functools import partial
        from pandas.core.dtypes.missing import _isna_ndarraylike as isna

        data, _ = self._get_data_to_aggregate()
        ids, _, ngroups = self.grouper.group_info
        mask = ids != -1

        val = ((mask & ~isna(np.atleast_2d(blk.get_values())))
               for blk in data.blocks)
        loc = (blk.mgr_locs for blk in data.blocks)

        counter = partial(count_level_2d, labels=ids, max_bin=ngroups, axis=1)
        blk = map(make_block, map(counter, val), loc)

        return self._wrap_agged_blocks(data.items, list(blk)) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:19,代碼來源:groupby.py

示例5: count

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def count(self):
        """ Compute count of group, excluding missing values """
        from functools import partial
        from pandas.core.dtypes.missing import _isna_ndarraylike as isna

        data, _ = self._get_data_to_aggregate()
        ids, _, ngroups = self.grouper.group_info
        mask = ids != -1

        val = ((mask & ~isna(blk.get_values())) for blk in data.blocks)
        loc = (blk.mgr_locs for blk in data.blocks)

        counter = partial(count_level_2d, labels=ids, max_bin=ngroups, axis=1)
        blk = map(make_block, map(counter, val), loc)

        return self._wrap_agged_blocks(data.items, list(blk)) 
開發者ID:securityclippy,項目名稱:elasticintel,代碼行數:18,代碼來源:groupby.py

示例6: test_merge

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def test_merge(self):
        avals = randn(2, 10)
        bvals = randn(2, 10)

        ref_cols = Index(['e', 'a', 'b', 'd', 'f'])

        ablock = make_block(avals, ref_cols.get_indexer(['e', 'b']))
        bblock = make_block(bvals, ref_cols.get_indexer(['a', 'd']))
        merged = ablock.merge(bblock)
        tm.assert_numpy_array_equal(merged.mgr_locs.as_array,
                                    np.array([0, 1, 2, 3], dtype=np.int64))
        tm.assert_numpy_array_equal(merged.values[[0, 2]], np.array(avals))
        tm.assert_numpy_array_equal(merged.values[[1, 3]], np.array(bvals))

        # TODO: merge with mixed type? 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:17,代碼來源:test_internals.py

示例7: test_get

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def test_get(self):
        cols = Index(list('abc'))
        values = np.random.rand(3, 3)
        block = make_block(values=values.copy(), placement=np.arange(3))
        mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)])

        assert_almost_equal(mgr.get('a', fastpath=False), values[0])
        assert_almost_equal(mgr.get('b', fastpath=False), values[1])
        assert_almost_equal(mgr.get('c', fastpath=False), values[2])
        assert_almost_equal(mgr.get('a').internal_values(), values[0])
        assert_almost_equal(mgr.get('b').internal_values(), values[1])
        assert_almost_equal(mgr.get('c').internal_values(), values[2]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_internals.py

示例8: test_deprecated_fastpath

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def test_deprecated_fastpath():
    # GH#19265
    values = np.random.rand(3, 3)
    with tm.assert_produces_warning(DeprecationWarning,
                                    check_stacklevel=False):
        make_block(values, placement=np.arange(3), fastpath=True) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_internals.py

示例9: test_validate_ndim

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def test_validate_ndim():
    values = np.array([1.0, 2.0])
    placement = slice(2)
    msg = r"Wrong number of dimensions. values.ndim != ndim \[1 != 2\]"

    with pytest.raises(ValueError, match=msg):
        make_block(values, placement, ndim=2) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:9,代碼來源:test_internals.py

示例10: _unstack_frame

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def _unstack_frame(obj, level):
    from pandas.core.internals import BlockManager, make_block

    if obj._is_mixed_type:
        unstacker = _Unstacker(np.empty(obj.shape, dtype=bool),  # dummy
                               obj.index, level=level,
                               value_columns=obj.columns)
        new_columns = unstacker.get_new_columns()
        new_index = unstacker.get_new_index()
        new_axes = [new_columns, new_index]

        new_blocks = []
        mask_blocks = []
        for blk in obj._data.blocks:
            bunstacker = _Unstacker(blk.values.T, obj.index, level=level,
                                    value_columns=blk.items)
            new_items = bunstacker.get_new_columns()
            new_values, mask = bunstacker.get_new_values()

            mblk = make_block(mask.T, new_items, new_columns)
            mask_blocks.append(mblk)

            newb = make_block(new_values.T, new_items, new_columns)
            new_blocks.append(newb)

        result = DataFrame(BlockManager(new_blocks, new_axes))
        mask_frame = DataFrame(BlockManager(mask_blocks, new_axes))
        return result.ix[:, mask_frame.sum(0) > 0]
    else:
        unstacker = _Unstacker(obj.values, obj.index, level=level,
                               value_columns=obj.columns)
        return unstacker.get_result() 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:34,代碼來源:reshape.py

示例11: block2d_to_blocknd

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def block2d_to_blocknd(values, items, shape, labels, ref_items=None):
    """ pivot to the labels shape """
    from pandas.core.internals import make_block
    panel_shape = (len(items),) + shape

    # TODO: lexsort depth needs to be 2!!

    # Create observation selection vector using major and minor
    # labels, for converting to panel format.
    selector = factor_indexer(shape[1:], labels)
    mask = np.zeros(np.prod(shape), dtype=bool)
    mask.put(selector, True)

    if mask.all():
        pvalues = np.empty(panel_shape, dtype=values.dtype)
    else:
        dtype, fill_value = _maybe_promote(values.dtype)
        pvalues = np.empty(panel_shape, dtype=dtype)
        pvalues.fill(fill_value)

    values = values
    for i in range(len(items)):
        pvalues[i].flat[mask] = values[:, i]

    if ref_items is None:
        ref_items = items

    return make_block(pvalues, items, ref_items) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:30,代碼來源:reshape.py

示例12: _cython_agg_blocks

# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import make_block [as 別名]
def _cython_agg_blocks(self, how, numeric_only=True):
        data, agg_axis = self._get_data_to_aggregate()

        new_blocks = []

        for block in data.blocks:
            values = block.values

            is_numeric = is_numeric_dtype(values.dtype)

            if numeric_only and not is_numeric:
                continue

            if is_numeric:
                values = com.ensure_float(values)

            result, _ = self.grouper.aggregate(values, how, axis=agg_axis)

            # see if we can cast the block back to the original dtype
            result = block._try_cast_result(result)

            newb = make_block(result, block.items, block.ref_items)
            new_blocks.append(newb)

        if len(new_blocks) == 0:
            raise DataError('No numeric types to aggregate')

        return new_blocks 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:30,代碼來源:groupby.py


注:本文中的pandas.core.internals.make_block方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。