本文整理匯總了Python中pandas.core.internals.SingleBlockManager方法的典型用法代碼示例。如果您正苦於以下問題:Python internals.SingleBlockManager方法的具體用法?Python internals.SingleBlockManager怎麽用?Python internals.SingleBlockManager使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.internals
的用法示例。
在下文中一共展示了internals.SingleBlockManager方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _unpickle_series_compat
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _unpickle_series_compat(self, state):
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(data, sparse_index=sp_index,
fill_value=fill_value, copy=False)
# recreate
data = SingleBlockManager(data, index, fastpath=True)
generic.NDFrame.__init__(self, data)
self._set_axis(0, index)
self.name = name
示例2: sparse_reindex
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError('new index must be a SparseIndex')
block = self.block.sparse_reindex(new_index)
new_data = SingleBlockManager(block, self.index)
return self._constructor(new_data, index=self.index,
sparse_index=new_index,
fill_value=self.fill_value).__finalize__(self)
示例3: _unpickle_series_compat
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _unpickle_series_compat(self, state):
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
# create a sparse array
if not isinstance(data, SparseArray):
data = SparseArray(
data, sparse_index=sp_index, fill_value=fill_value, copy=False)
# recreate
data = SingleBlockManager(data, index, fastpath=True)
generic.NDFrame.__init__(self, data)
self._set_axis(0, index)
self.name = name
示例4: sparse_reindex
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
if not isinstance(new_index, splib.SparseIndex):
raise TypeError('new index must be a SparseIndex')
block = self.block.sparse_reindex(new_index)
new_data = SingleBlockManager(block, block.ref_items)
return self._constructor(new_data, index=self.index,
sparse_index=new_index,
fill_value=self.fill_value).__finalize__(self)
示例5: test_custom_repr
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def test_custom_repr():
values = np.arange(3, dtype='int64')
# series
block = CustomBlock(values, placement=slice(0, 3))
s = pd.Series(SingleBlockManager(block, pd.RangeIndex(3)))
assert repr(s) == '0 Val: 0\n1 Val: 1\n2 Val: 2\ndtype: int64'
# dataframe
block = CustomBlock(values, placement=slice(0, 1))
blk_mgr = BlockManager([block], [['col'], range(3)])
df = pd.DataFrame(blk_mgr)
assert repr(df) == ' col\n0 Val: 0\n1 Val: 1\n2 Val: 2'
示例6: create_single_mgr
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def create_single_mgr(typestr, num_rows=None):
if num_rows is None:
num_rows = N
return SingleBlockManager(
create_block(typestr, placement=slice(0, num_rows), item_shape=()),
np.arange(num_rows))
示例7: __init__
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def __init__(self, data=None, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, dtype=None, copy=False,
fastpath=False):
# TODO: Most of this should be refactored and shared with Series
# 1. BlockManager -> array
# 2. Series.index, Series.name, index, name reconciliation
# 3. Implicit reindexing
# 4. Implicit broadcasting
# 5. Dict construction
if data is None:
data = []
elif isinstance(data, SingleBlockManager):
index = data.index
data = data.blocks[0].values
elif isinstance(data, (ABCSeries, ABCSparseSeries)):
index = data.index if index is None else index
dtype = data.dtype if dtype is None else dtype
name = data.name if name is None else name
if index is not None:
data = data.reindex(index)
elif isinstance(data, compat.Mapping):
data, index = Series()._init_dict(data, index=index)
elif is_scalar(data) and index is not None:
data = np.full(len(index), fill_value=data)
super(SparseSeries, self).__init__(
SparseArray(data,
sparse_index=sparse_index,
kind=kind,
dtype=dtype,
fill_value=fill_value,
copy=copy),
index=index, name=name,
copy=False, fastpath=fastpath
)
示例8: _set_value
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _set_value(self, label, value, takeable=False):
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibly change the index
new_values = values._set_value(label, value, takeable=takeable)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
示例9: _unpickle_series_compat
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _unpickle_series_compat(self, state):
if isinstance(state, dict):
self._data = state['_data']
self.name = state['name']
self.index = self._data.index
elif isinstance(state, tuple):
# < 0.12 series pickle
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
# backwards compat
index, name = own_state[0], None
if len(own_state) > 1:
name = own_state[1]
# recreate
self._data = SingleBlockManager(data, index, fastpath=True)
self._index = index
self.name = name
else:
raise Exception("cannot unpickle legacy formats -> [%s]" % state)
# indexers
示例10: _set_values
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = libindex.convert_scalar(values, value)
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, self.index)
示例11: set_value
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def set_value(self, label, value):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibily change the index
new_values = values.set_value(label, value)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(
values, fill_value=self.fill_value, kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
示例12: _set_values
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = _index.convert_scalar(values, value)
values = SparseArray(
values, fill_value=self.fill_value, kind=self.kind)
self._data = SingleBlockManager(values, self.index)
示例13: _unpickle_series_compat
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _unpickle_series_compat(self, state):
if isinstance(state, dict):
self._data = state['_data']
self.name = state['name']
self.index = self._data.index
elif isinstance(state, tuple):
# < 0.12 series pickle
nd_state, own_state = state
# recreate the ndarray
data = np.empty(nd_state[1], dtype=nd_state[2])
np.ndarray.__setstate__(data, nd_state)
# backwards compat
index, name = own_state[0], None
if len(own_state) > 1:
name = own_state[1]
index = _handle_legacy_indexes([index])[0]
# recreate
self._data = SingleBlockManager(data, index, fastpath=True)
self.index = index
self.name = name
else:
raise Exception("cannot unpickle legacy formats -> [%s]" % state)
# indexers
示例14: _set_value
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _set_value(self, label, value, takeable=False):
values = self.to_dense()
# if the label doesn't exist, we will create a new object here
# and possibily change the index
new_values = values._set_value(label, value, takeable=takeable)
if new_values is not None:
values = new_values
new_index = values.index
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, new_index)
self._index = new_index
示例15: _set_values
# 需要導入模塊: from pandas.core import internals [as 別名]
# 或者: from pandas.core.internals import SingleBlockManager [as 別名]
def _set_values(self, key, value):
# this might be inefficient as we have to recreate the sparse array
# rather than setting individual elements, but have to convert
# the passed slice/boolean that's in dense space into a sparse indexer
# not sure how to do that!
if isinstance(key, Series):
key = key.values
values = self.values.to_dense()
values[key] = _index.convert_scalar(values, value)
values = SparseArray(values, fill_value=self.fill_value,
kind=self.kind)
self._data = SingleBlockManager(values, self.index)