本文整理匯總了Python中pandas.core.index.MultiIndex.from_tuples方法的典型用法代碼示例。如果您正苦於以下問題:Python MultiIndex.from_tuples方法的具體用法?Python MultiIndex.from_tuples怎麽用?Python MultiIndex.from_tuples使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.index.MultiIndex
的用法示例。
在下文中一共展示了MultiIndex.from_tuples方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_mixed_depth_pop
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_mixed_depth_pop(self):
arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
['', 'OD', 'OD', 'result1', 'result2', 'result1'],
['', 'wx', 'wy', '', '', '']]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(randn(4, 6), columns=index)
df1 = df.copy()
df2 = df.copy()
result = df1.pop('a')
expected = df2.pop(('a', '', ''))
tm.assert_series_equal(expected, result, check_names=False)
tm.assert_frame_equal(df1, df2)
assert result.name == 'a'
expected = df1['top']
df1 = df1.drop(['top'], axis=1)
result = df2.pop('top')
tm.assert_frame_equal(expected, result)
tm.assert_frame_equal(df1, df2)
示例2: test_sort_ascending_list
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_sort_ascending_list(self):
# GH: 16934
# Set up a Series with a three level MultiIndex
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'],
[4, 3, 2, 1, 4, 3, 2, 1]]
tuples = lzip(*arrays)
mi = MultiIndex.from_tuples(tuples, names=['first', 'second', 'third'])
s = Series(range(8), index=mi)
# Sort with boolean ascending
result = s.sort_index(level=['third', 'first'], ascending=False)
expected = s.iloc[[4, 0, 5, 1, 6, 2, 7, 3]]
tm.assert_series_equal(result, expected)
# Sort with list of boolean ascending
result = s.sort_index(level=['third', 'first'],
ascending=[False, True])
expected = s.iloc[[0, 4, 1, 5, 2, 6, 3, 7]]
tm.assert_series_equal(result, expected)
示例3: test_sort_index_level
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_sort_index_level(self):
mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC'))
s = Series([1, 2], mi)
backwards = s.iloc[[1, 0]]
res = s.sort_index(level='A')
assert_series_equal(backwards, res)
res = s.sort_index(level=['A', 'B'])
assert_series_equal(backwards, res)
res = s.sort_index(level='A', sort_remaining=False)
assert_series_equal(s, res)
res = s.sort_index(level=['A', 'B'], sort_remaining=False)
assert_series_equal(s, res)
示例4: _transform_index
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def _transform_index(index, func, level=None):
"""
Apply function to all values found in index.
This includes transforming multiindex entries separately.
Only apply function to one level of the MultiIndex if level is specified.
"""
if isinstance(index, MultiIndex):
if level is not None:
items = [tuple(func(y) if i == level else y
for i, y in enumerate(x)) for x in index]
else:
items = [tuple(func(y) for y in x) for x in index]
return MultiIndex.from_tuples(items, names=index.names)
else:
items = [func(x) for x in index]
return Index(items, name=index.name, tupleize_cols=False)
示例5: test_xs_level
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_xs_level(self):
result = self.frame.xs('two', level='second')
expected = self.frame[self.frame.index.get_level_values(1) == 'two']
expected.index = expected.index.droplevel(1)
tm.assert_frame_equal(result, expected)
index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), (
'p', 'q', 'r')])
df = DataFrame(np.random.randn(3, 5), index=index)
result = df.xs('c', level=2)
expected = df[1:2]
expected.index = expected.index.droplevel(2)
tm.assert_frame_equal(result, expected)
# this is a copy in 0.14
result = self.frame.xs('two', level='second')
# setting this will give a SettingWithCopyError
# as we are trying to write a view
def f(x):
x[:] = 10
pytest.raises(com.SettingWithCopyError, f, result)
示例6: test_alignment
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_alignment(self):
x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), (
"A", 2), ("B", 3)]))
y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), (
"Z", 2), ("B", 3)]))
res = x - y
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
# hit non-monotonic code path
res = x[::-1] - y[::-1]
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
示例7: test_mixed_depth_get
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_mixed_depth_get(self, unicode_strings):
# If unicode_strings is True, the column labels in dataframe
# construction will use unicode strings in Python 2 (pull request
# #17099).
arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'],
['', 'OD', 'OD', 'result1', 'result2', 'result1'],
['', 'wx', 'wy', '', '', '']]
if unicode_strings:
arrays = [[u(s) for s in arr] for arr in arrays]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(4, 6), columns=index)
result = df['a']
expected = df['a', '', ''].rename('a')
tm.assert_series_equal(result, expected)
result = df['routine1', 'result1']
expected = df['routine1', 'result1', '']
expected = expected.rename(('routine1', 'result1'))
tm.assert_series_equal(result, expected)
示例8: test_iloc_mi
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_iloc_mi(self):
# GH 13797
# Test if iloc can handle integer locations in MultiIndexed DataFrame
data = [['str00', 'str01'], ['str10', 'str11'], ['str20', 'srt21'],
['str30', 'str31'], ['str40', 'str41']]
mi = MultiIndex.from_tuples(
[('CC', 'A'), ('CC', 'B'), ('CC', 'B'), ('BB', 'a'), ('BB', 'b')])
expected = DataFrame(data)
df_mi = DataFrame(data, index=mi)
result = DataFrame([[df_mi.iloc[r, c] for c in range(2)]
for r in range(5)])
tm.assert_frame_equal(result, expected)
示例9: _wrap_applied_output
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def _wrap_applied_output(self, keys, values, not_indexed_same=False):
if len(keys) == 0:
return Series([])
def _get_index():
if self.grouper.nkeys > 1:
index = MultiIndex.from_tuples(keys, names=self.grouper.names)
else:
index = Index(keys, name=self.grouper.names[0])
return index
if isinstance(values[0], dict):
# GH #823
index = _get_index()
return DataFrame(values, index=index).stack()
if isinstance(values[0], (Series, dict)):
return self._concat_objects(keys, values,
not_indexed_same=not_indexed_same)
elif isinstance(values[0], DataFrame):
# possible that Series -> DataFrame by applied function
return self._concat_objects(keys, values,
not_indexed_same=not_indexed_same)
else:
return Series(values, index=_get_index())
示例10: setup_method
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def setup_method(self, method):
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two',
'three']],
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
self.frame = DataFrame(np.random.randn(10, 3), index=index,
columns=Index(['A', 'B', 'C'], name='exp'))
self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']],
codes=[[0, 1, 2, 3]], names=['first'])
# create test series object
arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = lzip(*arrays)
index = MultiIndex.from_tuples(tuples)
s = Series(randn(8), index=index)
s[3] = np.NaN
self.series = s
self.tdf = tm.makeTimeDataFrame(100)
self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month,
lambda x: x.day]).sum()
# use Int64Index, to make sure things work
self.ymd.index.set_levels([lev.astype('i8')
for lev in self.ymd.index.levels],
inplace=True)
self.ymd.index.set_names(['year', 'month', 'day'], inplace=True)
示例11: test_repr_name_coincide
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_repr_name_coincide(self):
index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')],
names=['a', 'b', 'c'])
df = DataFrame({'value': [0, 1]}, index=index)
lines = repr(df).split('\n')
assert lines[2].startswith('a 0 foo')
示例12: test_delevel_infer_dtype
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_delevel_infer_dtype(self):
tuples = [tuple
for tuple in cart_product(
['foo', 'bar'], [10, 20], [1.0, 1.1])]
index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2'])
df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'],
index=index)
deleveled = df.reset_index()
assert is_integer_dtype(deleveled['prm1'])
assert is_float_dtype(deleveled['prm2'])
示例13: test_unstack_multiple_no_empty_columns
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_unstack_multiple_no_empty_columns(self):
index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (
1, 'baz', 1), (1, 'qux', 1)])
s = Series(np.random.randn(4), index=index)
unstacked = s.unstack([1, 2])
expected = unstacked.dropna(axis=1, how='all')
tm.assert_frame_equal(unstacked, expected)
示例14: test_groupby_level_no_obs
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_groupby_level_no_obs(self):
# #1697
midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), (
'f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')])
df = DataFrame(
[[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx)
df1 = df.loc(axis=1)[df.columns.map(
lambda u: u[0] in ['f2', 'f3'])]
grouped = df1.groupby(axis=1, level=0)
result = grouped.sum()
assert (result.columns == ['f2', 'f3']).all()
示例15: test_stat_op_corner
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_tuples [as 別名]
def test_stat_op_corner(self):
obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)]))
result = obj.sum(level=0)
expected = Series([10.0], index=[2])
tm.assert_series_equal(result, expected)