本文整理匯總了Python中pandas.core.index.MultiIndex.from_product方法的典型用法代碼示例。如果您正苦於以下問題:Python MultiIndex.from_product方法的具體用法?Python MultiIndex.from_product怎麽用?Python MultiIndex.from_product使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.index.MultiIndex
的用法示例。
在下文中一共展示了MultiIndex.from_product方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_constructor_with_generator
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_constructor_with_generator(self):
# This was raising an Error in isna(single_val).any() because isna
# returned a scalar for a generator
xrange = range
exp = Categorical([0, 1, 2])
cat = Categorical((x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = Categorical(xrange(3))
tm.assert_categorical_equal(cat, exp)
# This uses xrange internally
from pandas.core.index import MultiIndex
MultiIndex.from_product([range(5), ['a', 'b', 'c']])
# check that categories accept generators and sequences
cat = Categorical([0, 1, 2], categories=(x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = Categorical([0, 1, 2], categories=xrange(3))
tm.assert_categorical_equal(cat, exp)
示例2: test_datetimeindex
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_datetimeindex(self):
idx1 = pd.DatetimeIndex(
['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00'
] * 2, tz='Asia/Tokyo')
idx2 = pd.date_range('2010/01/01', periods=6, freq='M',
tz='US/Eastern')
idx = MultiIndex.from_arrays([idx1, idx2])
expected1 = pd.DatetimeIndex(['2013-04-01 9:00', '2013-04-02 9:00',
'2013-04-03 9:00'], tz='Asia/Tokyo')
tm.assert_index_equal(idx.levels[0], expected1)
tm.assert_index_equal(idx.levels[1], idx2)
# from datetime combos
# GH 7888
date1 = datetime.date.today()
date2 = datetime.datetime.today()
date3 = Timestamp.today()
for d1, d2 in itertools.product(
[date1, date2, date3], [date1, date2, date3]):
index = MultiIndex.from_product([[d1], [d2]])
assert isinstance(index.levels[0], pd.DatetimeIndex)
assert isinstance(index.levels[1], pd.DatetimeIndex)
示例3: test_reset_index_period
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_reset_index_period(self):
# GH 7746
idx = MultiIndex.from_product(
[pd.period_range('20130101', periods=3, freq='M'), list('abc')],
names=['month', 'feature'])
df = DataFrame(np.arange(9, dtype='int64').reshape(-1, 1),
index=idx, columns=['a'])
expected = DataFrame({
'month': ([pd.Period('2013-01', freq='M')] * 3 +
[pd.Period('2013-02', freq='M')] * 3 +
[pd.Period('2013-03', freq='M')] * 3),
'feature': ['a', 'b', 'c'] * 3,
'a': np.arange(9, dtype='int64')
}, columns=['month', 'feature', 'a'])
tm.assert_frame_equal(df.reset_index(), expected)
示例4: test_sort_index_reorder_on_ops
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_sort_index_reorder_on_ops(self):
# 15687
df = DataFrame(
np.random.randn(8, 2),
index=MultiIndex.from_product(
[['a', 'b'], ['big', 'small'], ['red', 'blu']],
names=['letter', 'size', 'color']),
columns=['near', 'far'])
df = df.sort_index()
def my_func(group):
group.index = ['newz', 'newa']
return group
result = df.groupby(level=['letter', 'size']).apply(
my_func).sort_index()
expected = MultiIndex.from_product(
[['a', 'b'], ['big', 'small'], ['newa', 'newz']],
names=['letter', 'size', None])
tm.assert_index_equal(result.index, expected)
示例5: test_datetimeindex
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_datetimeindex(self):
idx1 = pd.DatetimeIndex(
['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00'
] * 2, tz='Asia/Tokyo')
idx2 = pd.date_range('2010/01/01', periods=6, freq='M',
tz='US/Eastern')
idx = MultiIndex.from_arrays([idx1, idx2])
expected1 = pd.DatetimeIndex(['2013-04-01 9:00', '2013-04-02 9:00',
'2013-04-03 9:00'], tz='Asia/Tokyo')
tm.assert_index_equal(idx.levels[0], expected1)
tm.assert_index_equal(idx.levels[1], idx2)
# from datetime combos
# GH 7888
date1 = datetime.date.today()
date2 = datetime.datetime.today()
date3 = Timestamp.today()
for d1, d2 in itertools.product(
[date1, date2, date3], [date1, date2, date3]):
index = pd.MultiIndex.from_product([[d1], [d2]])
assert isinstance(index.levels[0], pd.DatetimeIndex)
assert isinstance(index.levels[1], pd.DatetimeIndex)
示例6: test_reset_index_period
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_reset_index_period(self):
# GH 7746
idx = pd.MultiIndex.from_product([pd.period_range('20130101',
periods=3, freq='M'),
['a', 'b', 'c']],
names=['month', 'feature'])
df = pd.DataFrame(np.arange(9, dtype='int64')
.reshape(-1, 1),
index=idx, columns=['a'])
expected = pd.DataFrame({
'month': ([pd.Period('2013-01', freq='M')] * 3 +
[pd.Period('2013-02', freq='M')] * 3 +
[pd.Period('2013-03', freq='M')] * 3),
'feature': ['a', 'b', 'c'] * 3,
'a': np.arange(9, dtype='int64')
}, columns=['month', 'feature', 'a'])
tm.assert_frame_equal(df.reset_index(), expected)
示例7: test_sort_index_reorder_on_ops
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_sort_index_reorder_on_ops(self):
# 15687
df = pd.DataFrame(
np.random.randn(8, 2),
index=MultiIndex.from_product(
[['a', 'b'],
['big', 'small'],
['red', 'blu']],
names=['letter', 'size', 'color']),
columns=['near', 'far'])
df = df.sort_index()
def my_func(group):
group.index = ['newz', 'newa']
return group
result = df.groupby(level=['letter', 'size']).apply(
my_func).sort_index()
expected = MultiIndex.from_product(
[['a', 'b'],
['big', 'small'],
['newa', 'newz']],
names=['letter', 'size', None])
tm.assert_index_equal(result.index, expected)
示例8: test_constructor_with_generator
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_constructor_with_generator(self):
# This was raising an Error in isna(single_val).any() because isna
# returned a scalar for a generator
xrange = range
exp = Categorical([0, 1, 2])
cat = Categorical((x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = Categorical(xrange(3))
tm.assert_categorical_equal(cat, exp)
# This uses xrange internally
from pandas.core.index import MultiIndex
MultiIndex.from_product([range(5), ['a', 'b', 'c']])
# check that categories accept generators and sequences
cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2]))
tm.assert_categorical_equal(cat, exp)
cat = pd.Categorical([0, 1, 2], categories=xrange(3))
tm.assert_categorical_equal(cat, exp)
示例9: _coo_to_sparse_series
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def _coo_to_sparse_series(A, dense_index=False):
""" Convert a scipy.sparse.coo_matrix to a SparseSeries.
Use the defaults given in the SparseSeries constructor.
"""
s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))
s = s.sort_index()
s = s.to_sparse() # TODO: specify kind?
if dense_index:
# is there a better constructor method to use here?
i = range(A.shape[0])
j = range(A.shape[1])
ind = MultiIndex.from_product([i, j])
s = s.reindex(ind)
return s
示例10: test_sort_index_and_reconstruction
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_sort_index_and_reconstruction(self):
# 15622
# lexsortedness should be identical
# across MultiIndex consruction methods
df = DataFrame([[1, 1], [2, 2]], index=list('ab'))
expected = DataFrame([[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_tuples([(0.5, 'a'),
(0.5, 'b'),
(0.8, 'a'),
(0.8, 'b')]))
assert expected.index.is_lexsorted()
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_product([[0.5, 0.8], list('ab')]))
result = result.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex(levels=[[0.5, 0.8], ['a', 'b']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]]))
result = result.sort_index()
assert result.index.is_lexsorted()
tm.assert_frame_equal(result, expected)
concatted = pd.concat([df, df], keys=[0.8, 0.5])
result = concatted.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# 14015
df = DataFrame([[1, 2], [6, 7]],
columns=MultiIndex.from_tuples(
[(0, '20160811 12:00:00'),
(0, '20160809 12:00:00')],
names=['l1', 'Date']))
df.columns.set_levels(pd.to_datetime(df.columns.levels[1]),
level=1,
inplace=True)
assert not df.columns.is_lexsorted()
assert not df.columns.is_monotonic
result = df.sort_index(axis=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic
result = df.sort_index(axis=1, level=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic
示例11: test_sort_index_and_reconstruction
# 需要導入模塊: from pandas.core.index import MultiIndex [as 別名]
# 或者: from pandas.core.index.MultiIndex import from_product [as 別名]
def test_sort_index_and_reconstruction(self):
# 15622
# lexsortedness should be identical
# across MultiIndex consruction methods
df = DataFrame([[1, 1], [2, 2]], index=list('ab'))
expected = DataFrame([[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_tuples([(0.5, 'a'),
(0.5, 'b'),
(0.8, 'a'),
(0.8, 'b')]))
assert expected.index.is_lexsorted()
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex.from_product([[0.5, 0.8], list('ab')]))
result = result.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
result = DataFrame(
[[1, 1], [2, 2], [1, 1], [2, 2]],
index=MultiIndex(levels=[[0.5, 0.8], ['a', 'b']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]]))
result = result.sort_index()
assert result.index.is_lexsorted()
tm.assert_frame_equal(result, expected)
concatted = pd.concat([df, df], keys=[0.8, 0.5])
result = concatted.sort_index()
assert result.index.is_lexsorted()
assert result.index.is_monotonic
tm.assert_frame_equal(result, expected)
# 14015
df = DataFrame([[1, 2], [6, 7]],
columns=MultiIndex.from_tuples(
[(0, '20160811 12:00:00'),
(0, '20160809 12:00:00')],
names=['l1', 'Date']))
df.columns.set_levels(pd.to_datetime(df.columns.levels[1]),
level=1,
inplace=True)
assert not df.columns.is_lexsorted()
assert not df.columns.is_monotonic
result = df.sort_index(axis=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic
result = df.sort_index(axis=1, level=1)
assert result.columns.is_lexsorted()
assert result.columns.is_monotonic