本文整理匯總了Python中pandas.core.frame.Series方法的典型用法代碼示例。如果您正苦於以下問題:Python frame.Series方法的具體用法?Python frame.Series怎麽用?Python frame.Series使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.frame
的用法示例。
在下文中一共展示了frame.Series方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_read_write_dta10
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta10(self, version):
original = DataFrame(data=[["string", "object", 1, 1.1,
np.datetime64('2003-12-25')]],
columns=['string', 'object', 'integer',
'floating', 'datetime'])
original["object"] = Series(original["object"], dtype=object)
original.index.name = 'index'
original.index = original.index.astype(np.int32)
original['integer'] = original['integer'].astype(np.int32)
with tm.ensure_clean() as path:
original.to_stata(path, {'datetime': 'tc'}, version=version)
written_and_read_again = self.read_dta(path)
# original.index is np.int32, read index is np.int64
tm.assert_frame_equal(written_and_read_again.set_index('index'),
original, check_index_type=False)
示例2: test_large_value_conversion
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_large_value_conversion(self):
s0 = Series([1, 99], dtype=np.int8)
s1 = Series([1, 127], dtype=np.int8)
s2 = Series([1, 2 ** 15 - 1], dtype=np.int16)
s3 = Series([1, 2 ** 63 - 1], dtype=np.int64)
original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3})
original.index.name = 'index'
with tm.ensure_clean() as path:
with tm.assert_produces_warning(PossiblePrecisionLoss):
original.to_stata(path)
written_and_read_again = self.read_dta(path)
modified = original.copy()
modified['s1'] = Series(modified['s1'], dtype=np.int16)
modified['s2'] = Series(modified['s2'], dtype=np.int32)
modified['s3'] = Series(modified['s3'], dtype=np.float64)
tm.assert_frame_equal(written_and_read_again.set_index('index'),
modified)
示例3: test_minimal_size_col
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_minimal_size_col(self):
str_lens = (1, 100, 244)
s = {}
for str_len in str_lens:
s['s' + str(str_len)] = Series(['a' * str_len,
'b' * str_len, 'c' * str_len])
original = DataFrame(s)
with tm.ensure_clean() as path:
original.to_stata(path, write_index=False)
with StataReader(path) as sr:
typlist = sr.typlist
variables = sr.varlist
formats = sr.fmtlist
for variable, fmt, typ in zip(variables, formats, typlist):
assert int(variable[1:]) == int(fmt[1:-1])
assert int(variable[1:]) == typ
示例4: test_read_write_dta10
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta10(self):
original = DataFrame(data=[["string", "object", 1, 1.1,
np.datetime64('2003-12-25')]],
columns=['string', 'object', 'integer',
'floating', 'datetime'])
original["object"] = Series(original["object"], dtype=object)
original.index.name = 'index'
original.index = original.index.astype(np.int32)
original['integer'] = original['integer'].astype(np.int32)
with tm.ensure_clean() as path:
original.to_stata(path, {'datetime': 'tc'})
written_and_read_again = self.read_dta(path)
# original.index is np.int32, readed index is np.int64
tm.assert_frame_equal(written_and_read_again.set_index('index'),
original, check_index_type=False)
示例5: _persist_dataframe
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def _persist_dataframe(self, raw, conn, user_ns):
if not DataFrame:
raise ImportError("Must `pip install pandas` to use DataFrames")
pieces = raw.split()
if len(pieces) != 2:
raise SyntaxError(
"Format: %%cypher [connection] persist <DataFrameName>"
)
frame_name = pieces[1].strip(';')
frame = eval(frame_name, user_ns)
if not isinstance(frame, DataFrame) and not isinstance(frame, Series):
raise TypeError(
'%s is not a Pandas DataFrame or Series' % frame_name
)
table_name = frame_name.lower()
table_name = self._legal_cypher_identifier.search(table_name).group(0)
frame.to_sql(table_name, conn.session.engine)
return 'Persisted %s' % table_name
示例6: test_read_write_dta13
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta13(self):
s1 = Series(2 ** 9, dtype=np.int16)
s2 = Series(2 ** 17, dtype=np.int32)
s3 = Series(2 ** 33, dtype=np.int64)
original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3})
original.index.name = 'index'
formatted = original
formatted['int64'] = formatted['int64'].astype(np.float64)
with tm.ensure_clean() as path:
original.to_stata(path)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index('index'),
formatted)
示例7: test_nan_to_missing_value
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_nan_to_missing_value(self, version):
s1 = Series(np.arange(4.0), dtype=np.float32)
s2 = Series(np.arange(4.0), dtype=np.float64)
s1[::2] = np.nan
s2[1::2] = np.nan
original = DataFrame({'s1': s1, 's2': s2})
original.index.name = 'index'
with tm.ensure_clean() as path:
original.to_stata(path, version=version)
written_and_read_again = self.read_dta(path)
written_and_read_again = written_and_read_again.set_index('index')
tm.assert_frame_equal(written_and_read_again, original)
示例8: test_string_no_dates
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_string_no_dates(self):
s1 = Series(['a', 'A longer string'])
s2 = Series([1.0, 2.0], dtype=np.float64)
original = DataFrame({'s1': s1, 's2': s2})
original.index.name = 'index'
with tm.ensure_clean() as path:
original.to_stata(path)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(written_and_read_again.set_index('index'),
original)
示例9: test_excessively_long_string
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_excessively_long_string(self):
str_lens = (1, 244, 500)
s = {}
for str_len in str_lens:
s['s' + str(str_len)] = Series(['a' * str_len,
'b' * str_len, 'c' * str_len])
original = DataFrame(s)
msg = (r"Fixed width strings in Stata \.dta files are limited to 244"
r" \(or fewer\)\ncharacters\. Column 's500' does not satisfy"
r" this restriction\. Use the\n'version=117' parameter to write"
r" the newer \(Stata 13 and later\) format\.")
with pytest.raises(ValueError, match=msg):
with tm.ensure_clean() as path:
original.to_stata(path)
示例10: test_categorical_order
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_order(self, file):
# Directly construct using expected codes
# Format is is_cat, col_name, labels (in order), underlying data
expected = [(True, 'ordered', ['a', 'b', 'c', 'd', 'e'], np.arange(5)),
(True, 'reverse', ['a', 'b', 'c',
'd', 'e'], np.arange(5)[::-1]),
(True, 'noorder', ['a', 'b', 'c', 'd',
'e'], np.array([2, 1, 4, 0, 3])),
(True, 'floating', [
'a', 'b', 'c', 'd', 'e'], np.arange(0, 5)),
(True, 'float_missing', [
'a', 'd', 'e'], np.array([0, 1, 2, -1, -1])),
(False, 'nolabel', [
1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)),
(True, 'int32_mixed', ['d', 2, 'e', 'b', 'a'],
np.arange(5))]
cols = []
for is_cat, col, labels, codes in expected:
if is_cat:
cols.append((col, pd.Categorical.from_codes(codes, labels)))
else:
cols.append((col, pd.Series(labels, dtype=np.float32)))
expected = DataFrame.from_dict(OrderedDict(cols))
# Read with and with out categoricals, ensure order is identical
file = getattr(self, file)
parsed = read_stata(file)
tm.assert_frame_equal(expected, parsed, check_categorical=False)
# Check identity of codes
for col in expected:
if is_categorical_dtype(expected[col]):
tm.assert_series_equal(expected[col].cat.codes,
parsed[col].cat.codes)
tm.assert_index_equal(expected[col].cat.categories,
parsed[col].cat.categories)
示例11: test_categorical_sorting
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_sorting(self, file):
parsed = read_stata(getattr(self, file))
# Sort based on codes, not strings
parsed = parsed.sort_values("srh", na_position='first')
# Don't sort index
parsed.index = np.arange(parsed.shape[0])
codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
cat = pd.Categorical.from_codes(codes=codes, categories=categories)
expected = pd.Series(cat, name='srh')
tm.assert_series_equal(expected, parsed["srh"],
check_categorical=False)
示例12: test_writer_117
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_writer_117(self):
original = DataFrame(data=[['string', 'object', 1, 1, 1, 1.1, 1.1,
np.datetime64('2003-12-25'),
'a', 'a' * 2045, 'a' * 5000, 'a'],
['string-1', 'object-1', 1, 1, 1, 1.1, 1.1,
np.datetime64('2003-12-26'),
'b', 'b' * 2045, '', '']
],
columns=['string', 'object', 'int8', 'int16',
'int32', 'float32', 'float64',
'datetime',
's1', 's2045', 'srtl', 'forced_strl'])
original['object'] = Series(original['object'], dtype=object)
original['int8'] = Series(original['int8'], dtype=np.int8)
original['int16'] = Series(original['int16'], dtype=np.int16)
original['int32'] = original['int32'].astype(np.int32)
original['float32'] = Series(original['float32'], dtype=np.float32)
original.index.name = 'index'
original.index = original.index.astype(np.int32)
copy = original.copy()
with tm.ensure_clean() as path:
original.to_stata(path,
convert_dates={'datetime': 'tc'},
convert_strl=['forced_strl'],
version=117)
written_and_read_again = self.read_dta(path)
# original.index is np.int32, read index is np.int64
tm.assert_frame_equal(written_and_read_again.set_index('index'),
original, check_index_type=False)
tm.assert_frame_equal(original, copy)
示例13: test_excessively_long_string
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_excessively_long_string(self):
str_lens = (1, 244, 500)
s = {}
for str_len in str_lens:
s['s' + str(str_len)] = Series(['a' * str_len,
'b' * str_len, 'c' * str_len])
original = DataFrame(s)
with pytest.raises(ValueError):
with tm.ensure_clean() as path:
original.to_stata(path)
示例14: test_categorical_sorting
# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_sorting(self, file):
parsed = read_stata(getattr(self, file))
# Sort based on codes, not strings
parsed = parsed.sort_values("srh")
# Don't sort index
parsed.index = np.arange(parsed.shape[0])
codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
cat = pd.Categorical.from_codes(codes=codes, categories=categories)
expected = pd.Series(cat, name='srh')
tm.assert_series_equal(expected, parsed["srh"],
check_categorical=False)