當前位置: 首頁>>代碼示例>>Python>>正文


Python frame.Series方法代碼示例

本文整理匯總了Python中pandas.core.frame.Series方法的典型用法代碼示例。如果您正苦於以下問題:Python frame.Series方法的具體用法?Python frame.Series怎麽用?Python frame.Series使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.frame的用法示例。


在下文中一共展示了frame.Series方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_read_write_dta10

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta10(self, version):
        original = DataFrame(data=[["string", "object", 1, 1.1,
                                    np.datetime64('2003-12-25')]],
                             columns=['string', 'object', 'integer',
                                      'floating', 'datetime'])
        original["object"] = Series(original["object"], dtype=object)
        original.index.name = 'index'
        original.index = original.index.astype(np.int32)
        original['integer'] = original['integer'].astype(np.int32)

        with tm.ensure_clean() as path:
            original.to_stata(path, {'datetime': 'tc'}, version=version)
            written_and_read_again = self.read_dta(path)
            # original.index is np.int32, read index is np.int64
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  original, check_index_type=False) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_stata.py

示例2: test_large_value_conversion

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_large_value_conversion(self):
        s0 = Series([1, 99], dtype=np.int8)
        s1 = Series([1, 127], dtype=np.int8)
        s2 = Series([1, 2 ** 15 - 1], dtype=np.int16)
        s3 = Series([1, 2 ** 63 - 1], dtype=np.int64)
        original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3})
        original.index.name = 'index'
        with tm.ensure_clean() as path:
            with tm.assert_produces_warning(PossiblePrecisionLoss):
                original.to_stata(path)

            written_and_read_again = self.read_dta(path)
            modified = original.copy()
            modified['s1'] = Series(modified['s1'], dtype=np.int16)
            modified['s2'] = Series(modified['s2'], dtype=np.int32)
            modified['s3'] = Series(modified['s3'], dtype=np.float64)
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  modified) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_stata.py

示例3: test_minimal_size_col

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_minimal_size_col(self):
        str_lens = (1, 100, 244)
        s = {}
        for str_len in str_lens:
            s['s' + str(str_len)] = Series(['a' * str_len,
                                            'b' * str_len, 'c' * str_len])
        original = DataFrame(s)
        with tm.ensure_clean() as path:
            original.to_stata(path, write_index=False)

            with StataReader(path) as sr:
                typlist = sr.typlist
                variables = sr.varlist
                formats = sr.fmtlist
                for variable, fmt, typ in zip(variables, formats, typlist):
                    assert int(variable[1:]) == int(fmt[1:-1])
                    assert int(variable[1:]) == typ 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_stata.py

示例4: test_read_write_dta10

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta10(self):
        original = DataFrame(data=[["string", "object", 1, 1.1,
                                    np.datetime64('2003-12-25')]],
                             columns=['string', 'object', 'integer',
                                      'floating', 'datetime'])
        original["object"] = Series(original["object"], dtype=object)
        original.index.name = 'index'
        original.index = original.index.astype(np.int32)
        original['integer'] = original['integer'].astype(np.int32)

        with tm.ensure_clean() as path:
            original.to_stata(path, {'datetime': 'tc'})
            written_and_read_again = self.read_dta(path)
            # original.index is np.int32, readed index is np.int64
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  original, check_index_type=False) 
開發者ID:securityclippy,項目名稱:elasticintel,代碼行數:18,代碼來源:test_stata.py

示例5: _persist_dataframe

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def _persist_dataframe(self, raw, conn, user_ns):
        if not DataFrame:
            raise ImportError("Must `pip install pandas` to use DataFrames")
        pieces = raw.split()
        if len(pieces) != 2:
            raise SyntaxError(
                "Format: %%cypher [connection] persist <DataFrameName>"
            )
        frame_name = pieces[1].strip(';')
        frame = eval(frame_name, user_ns)
        if not isinstance(frame, DataFrame) and not isinstance(frame, Series):
            raise TypeError(
                '%s is not a Pandas DataFrame or Series' % frame_name
            )
        table_name = frame_name.lower()
        table_name = self._legal_cypher_identifier.search(table_name).group(0)
        frame.to_sql(table_name, conn.session.engine)
        return 'Persisted %s' % table_name 
開發者ID:versae,項目名稱:ipython-cypher,代碼行數:20,代碼來源:magic.py

示例6: test_read_write_dta13

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_read_write_dta13(self):
        s1 = Series(2 ** 9, dtype=np.int16)
        s2 = Series(2 ** 17, dtype=np.int32)
        s3 = Series(2 ** 33, dtype=np.int64)
        original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3})
        original.index.name = 'index'

        formatted = original
        formatted['int64'] = formatted['int64'].astype(np.float64)

        with tm.ensure_clean() as path:
            original.to_stata(path)
            written_and_read_again = self.read_dta(path)
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  formatted) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:17,代碼來源:test_stata.py

示例7: test_nan_to_missing_value

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_nan_to_missing_value(self, version):
        s1 = Series(np.arange(4.0), dtype=np.float32)
        s2 = Series(np.arange(4.0), dtype=np.float64)
        s1[::2] = np.nan
        s2[1::2] = np.nan
        original = DataFrame({'s1': s1, 's2': s2})
        original.index.name = 'index'
        with tm.ensure_clean() as path:
            original.to_stata(path, version=version)
            written_and_read_again = self.read_dta(path)
            written_and_read_again = written_and_read_again.set_index('index')
            tm.assert_frame_equal(written_and_read_again, original) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_stata.py

示例8: test_string_no_dates

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_string_no_dates(self):
        s1 = Series(['a', 'A longer string'])
        s2 = Series([1.0, 2.0], dtype=np.float64)
        original = DataFrame({'s1': s1, 's2': s2})
        original.index.name = 'index'
        with tm.ensure_clean() as path:
            original.to_stata(path)
            written_and_read_again = self.read_dta(path)
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  original) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:12,代碼來源:test_stata.py

示例9: test_excessively_long_string

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_excessively_long_string(self):
        str_lens = (1, 244, 500)
        s = {}
        for str_len in str_lens:
            s['s' + str(str_len)] = Series(['a' * str_len,
                                            'b' * str_len, 'c' * str_len])
        original = DataFrame(s)
        msg = (r"Fixed width strings in Stata \.dta files are limited to 244"
               r" \(or fewer\)\ncharacters\.  Column 's500' does not satisfy"
               r" this restriction\. Use the\n'version=117' parameter to write"
               r" the newer \(Stata 13 and later\) format\.")
        with pytest.raises(ValueError, match=msg):
            with tm.ensure_clean() as path:
                original.to_stata(path) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:16,代碼來源:test_stata.py

示例10: test_categorical_order

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_order(self, file):
        # Directly construct using expected codes
        # Format is is_cat, col_name, labels (in order), underlying data
        expected = [(True, 'ordered', ['a', 'b', 'c', 'd', 'e'], np.arange(5)),
                    (True, 'reverse', ['a', 'b', 'c',
                                       'd', 'e'], np.arange(5)[::-1]),
                    (True, 'noorder', ['a', 'b', 'c', 'd',
                                       'e'], np.array([2, 1, 4, 0, 3])),
                    (True, 'floating', [
                     'a', 'b', 'c', 'd', 'e'], np.arange(0, 5)),
                    (True, 'float_missing', [
                     'a', 'd', 'e'], np.array([0, 1, 2, -1, -1])),
                    (False, 'nolabel', [
                     1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)),
                    (True, 'int32_mixed', ['d', 2, 'e', 'b', 'a'],
                     np.arange(5))]
        cols = []
        for is_cat, col, labels, codes in expected:
            if is_cat:
                cols.append((col, pd.Categorical.from_codes(codes, labels)))
            else:
                cols.append((col, pd.Series(labels, dtype=np.float32)))
        expected = DataFrame.from_dict(OrderedDict(cols))

        # Read with and with out categoricals, ensure order is identical
        file = getattr(self, file)
        parsed = read_stata(file)
        tm.assert_frame_equal(expected, parsed, check_categorical=False)

        # Check identity of codes
        for col in expected:
            if is_categorical_dtype(expected[col]):
                tm.assert_series_equal(expected[col].cat.codes,
                                       parsed[col].cat.codes)
                tm.assert_index_equal(expected[col].cat.categories,
                                      parsed[col].cat.categories) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:38,代碼來源:test_stata.py

示例11: test_categorical_sorting

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_sorting(self, file):
        parsed = read_stata(getattr(self, file))

        # Sort based on codes, not strings
        parsed = parsed.sort_values("srh", na_position='first')

        # Don't sort index
        parsed.index = np.arange(parsed.shape[0])
        codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
        categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
        cat = pd.Categorical.from_codes(codes=codes, categories=categories)
        expected = pd.Series(cat, name='srh')
        tm.assert_series_equal(expected, parsed["srh"],
                               check_categorical=False) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:16,代碼來源:test_stata.py

示例12: test_writer_117

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_writer_117(self):
        original = DataFrame(data=[['string', 'object', 1, 1, 1, 1.1, 1.1,
                                    np.datetime64('2003-12-25'),
                                    'a', 'a' * 2045, 'a' * 5000, 'a'],
                                   ['string-1', 'object-1', 1, 1, 1, 1.1, 1.1,
                                    np.datetime64('2003-12-26'),
                                    'b', 'b' * 2045, '', '']
                                   ],
                             columns=['string', 'object', 'int8', 'int16',
                                      'int32', 'float32', 'float64',
                                      'datetime',
                                      's1', 's2045', 'srtl', 'forced_strl'])
        original['object'] = Series(original['object'], dtype=object)
        original['int8'] = Series(original['int8'], dtype=np.int8)
        original['int16'] = Series(original['int16'], dtype=np.int16)
        original['int32'] = original['int32'].astype(np.int32)
        original['float32'] = Series(original['float32'], dtype=np.float32)
        original.index.name = 'index'
        original.index = original.index.astype(np.int32)
        copy = original.copy()
        with tm.ensure_clean() as path:
            original.to_stata(path,
                              convert_dates={'datetime': 'tc'},
                              convert_strl=['forced_strl'],
                              version=117)
            written_and_read_again = self.read_dta(path)
            # original.index is np.int32, read index is np.int64
            tm.assert_frame_equal(written_and_read_again.set_index('index'),
                                  original, check_index_type=False)
            tm.assert_frame_equal(original, copy) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:32,代碼來源:test_stata.py

示例13: test_excessively_long_string

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_excessively_long_string(self):
        str_lens = (1, 244, 500)
        s = {}
        for str_len in str_lens:
            s['s' + str(str_len)] = Series(['a' * str_len,
                                            'b' * str_len, 'c' * str_len])
        original = DataFrame(s)
        with pytest.raises(ValueError):
            with tm.ensure_clean() as path:
                original.to_stata(path) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:12,代碼來源:test_stata.py

示例14: test_categorical_sorting

# 需要導入模塊: from pandas.core import frame [as 別名]
# 或者: from pandas.core.frame import Series [as 別名]
def test_categorical_sorting(self, file):
        parsed = read_stata(getattr(self, file))

        # Sort based on codes, not strings
        parsed = parsed.sort_values("srh")

        # Don't sort index
        parsed.index = np.arange(parsed.shape[0])
        codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4]
        categories = ["Poor", "Fair", "Good", "Very good", "Excellent"]
        cat = pd.Categorical.from_codes(codes=codes, categories=categories)
        expected = pd.Series(cat, name='srh')
        tm.assert_series_equal(expected, parsed["srh"],
                               check_categorical=False) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:16,代碼來源:test_stata.py


注:本文中的pandas.core.frame.Series方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。