當前位置: 首頁>>代碼示例>>Python>>正文


Python DataFrame.fillna方法代碼示例

本文整理匯總了Python中pandas.core.frame.DataFrame.fillna方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.fillna方法的具體用法?Python DataFrame.fillna怎麽用?Python DataFrame.fillna使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.frame.DataFrame的用法示例。


在下文中一共展示了DataFrame.fillna方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pad

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def pad(self, limit=None):
        """
        Forward fill the values.

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.pad
        DataFrame.pad
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('ffill', limit=limit) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:groupby.py

示例2: backfill

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def backfill(self, limit=None):
        """
        Backward fill the values.

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.backfill
        DataFrame.backfill
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('bfill', limit=limit) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:groupby.py

示例3: pad

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def pad(self, limit=None):
        """
        Forward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.pad
        DataFrame.pad
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('ffill', limit=limit) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:groupby.py

示例4: backfill

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def backfill(self, limit=None):
        """
        Backward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.backfill
        DataFrame.backfill
        Series.fillna
        DataFrame.fillna
        """
        return self._fill('bfill', limit=limit) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:groupby.py

示例5: _transform_fast

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def _transform_fast(self, result, obj):
        """
        Fast transform path for aggregations
        """
        # if there were groups with no observations (Categorical only?)
        # try casting data to original dtype
        cast = (self.size().fillna(0) > 0).any()

        # for each col, reshape to to size of original frame
        # by take operation
        ids, _, ngroup = self.grouper.group_info
        output = []
        for i, _ in enumerate(result.columns):
            res = algorithms.take_1d(result.iloc[:, i].values, ids)
            if cast:
                res = self._try_cast(res, obj.iloc[:, i])
            output.append(res)

        return DataFrame._from_arrays(output, columns=result.columns,
                                      index=obj.index) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:22,代碼來源:groupby.py

示例6: _transform_should_cast

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def _transform_should_cast(self, func_nm):
        """
        Parameters:
        -----------
        func_nm: str
            The name of the aggregation function being performed

        Returns:
        --------
        bool
            Whether transform should attempt to cast the result of aggregation
        """
        return (self.size().fillna(0) > 0).any() and (
            func_nm not in base.cython_cast_blacklist) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:16,代碼來源:groupby.py

示例7: _transform_should_cast

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def _transform_should_cast(self, func_nm):
        """
        Parameters:
        -----------
        func_nm: str
            The name of the aggregation function being performed

        Returns:
        --------
        bool
            Whether transform should attempt to cast the result of aggregation
        """
        return (self.size().fillna(0) > 0).any() and (func_nm not in
                                                      _cython_cast_blacklist) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:16,代碼來源:groupby.py

示例8: pad

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def pad(self, limit=None):
        """
        Forward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.fillna
        DataFrame.fillna
        """
        return self.apply(lambda x: x.ffill(limit=limit)) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:17,代碼來源:groupby.py

示例9: backfill

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import fillna [as 別名]
def backfill(self, limit=None):
        """
        Backward fill the values

        Parameters
        ----------
        limit : integer, optional
            limit of how many values to fill

        See Also
        --------
        Series.fillna
        DataFrame.fillna
        """
        return self.apply(lambda x: x.bfill(limit=limit)) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:17,代碼來源:groupby.py


注:本文中的pandas.core.frame.DataFrame.fillna方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。