本文整理匯總了Python中pandas.core.frame.DataFrame.apply方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.apply方法的具體用法?Python DataFrame.apply怎麽用?Python DataFrame.apply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.core.frame.DataFrame
的用法示例。
在下文中一共展示了DataFrame.apply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: cumsum
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumsum(self, axis=0, *args, **kwargs):
"""
Return SparseDataFrame of cumulative sums over requested axis.
Parameters
----------
axis : {0, 1}
0 for row-wise, 1 for column-wise
Returns
-------
y : SparseDataFrame
"""
nv.validate_cumsum(args, kwargs)
if axis is None:
axis = self._stat_axis_number
return self.apply(lambda x: x.cumsum(), axis=axis)
示例2: applymap
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def applymap(self, func):
"""
Apply a function to a DataFrame that is intended to operate
elementwise, i.e. like doing map(func, series) for each series in the
DataFrame
Parameters
----------
func : function
Python function, returns a single value from a single value
Returns
-------
applied : DataFrame
"""
return self.apply(lambda x: lmap(func, x))
示例3: shift
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def shift(self, periods=1, freq=None, axis=0, fill_value=None):
"""
Shift each group by periods observations.
Parameters
----------
periods : integer, default 1
number of periods to shift
freq : frequency string
axis : axis to shift, default 0
fill_value : optional
.. versionadded:: 0.24.0
"""
if freq is not None or axis != 0 or not isna(fill_value):
return self.apply(lambda x: x.shift(periods, freq,
axis, fill_value))
return self._get_cythonized_result('group_shift_indexer',
self.grouper, cython_dtype=np.int64,
needs_ngroups=True,
result_is_index=True,
periods=periods)
示例4: aggregate
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def aggregate(self, func, axis=0, *args, **kwargs):
# Validate the axis parameter
self._get_axis_number(axis)
result, how = self._aggregate(func, *args, **kwargs)
if result is None:
# we can be called from an inner function which
# passes this meta-data
kwargs.pop('_axis', None)
kwargs.pop('_level', None)
# try a regular apply, this evaluates lambdas
# row-by-row; however if the lambda is expected a Series
# expression, e.g.: lambda x: x-x.quantile(0.25)
# this will fail, so we can try a vectorized evaluation
# we cannot FIRST try the vectorized evaluation, because
# then .agg and .apply would have different semantics if the
# operation is actually defined on the Series, e.g. str
try:
result = self.apply(func, *args, **kwargs)
except (ValueError, AttributeError, TypeError):
result = func(self, *args, **kwargs)
return result
示例5: aggregate
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def aggregate(self, func, axis=0, *args, **kwargs):
axis = self._get_axis_number(axis)
result, how = self._aggregate(func, *args, **kwargs)
if result is None:
# we can be called from an inner function which
# passes this meta-data
kwargs.pop('_axis', None)
kwargs.pop('_level', None)
# try a regular apply, this evaluates lambdas
# row-by-row; however if the lambda is expected a Series
# expression, e.g.: lambda x: x-x.quantile(0.25)
# this will fail, so we can try a vectorized evaluation
# we cannot FIRST try the vectorized evaluation, becuase
# then .agg and .apply would have different semantics if the
# operation is actually defined on the Series, e.g. str
try:
result = self.apply(func, *args, **kwargs)
except (ValueError, AttributeError, TypeError):
result = func(self, *args, **kwargs)
return result
示例6: count
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def count(self, axis=0, **kwds):
if axis is None:
axis = self._stat_axis_number
return self.apply(lambda x: x.count(), axis=axis)
示例7: __call__
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def __call__(self, *args, **kwargs):
def f(self):
return self.plot(*args, **kwargs)
f.__name__ = 'plot'
return self._groupby.apply(f)
示例8: __getattr__
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def __getattr__(self, name):
def attr(*args, **kwargs):
def f(self):
return getattr(self.plot, name)(*args, **kwargs)
return self._groupby.apply(f)
return attr
示例9: _python_apply_general
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def _python_apply_general(self, f):
keys, values, mutated = self.grouper.apply(f, self._selected_obj,
self.axis)
return self._wrap_applied_output(
keys,
values,
not_indexed_same=mutated or self.mutated)
示例10: describe
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def describe(self, **kwargs):
with _group_selection_context(self):
result = self.apply(lambda x: x.describe(**kwargs))
if self.axis == 1:
return result.T
return result.unstack()
示例11: cumprod
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumprod(self, axis=0, *args, **kwargs):
"""
Cumulative product for each group.
"""
nv.validate_groupby_func('cumprod', args, kwargs,
['numeric_only', 'skipna'])
if axis != 0:
return self.apply(lambda x: x.cumprod(axis=axis, **kwargs))
return self._cython_transform('cumprod', **kwargs)
示例12: cumsum
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumsum(self, axis=0, *args, **kwargs):
"""
Cumulative sum for each group.
"""
nv.validate_groupby_func('cumsum', args, kwargs,
['numeric_only', 'skipna'])
if axis != 0:
return self.apply(lambda x: x.cumsum(axis=axis, **kwargs))
return self._cython_transform('cumsum', **kwargs)
示例13: cummax
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cummax(self, axis=0, **kwargs):
"""
Cumulative max for each group.
"""
if axis != 0:
return self.apply(lambda x: np.maximum.accumulate(x, axis))
return self._cython_transform('cummax', numeric_only=False)
示例14: pct_change
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def pct_change(self, periods=1, fill_method='pad', limit=None, freq=None,
axis=0):
"""
Calculate pct_change of each value to previous entry in group.
"""
if freq is not None or axis != 0:
return self.apply(lambda x: x.pct_change(periods=periods,
fill_method=fill_method,
limit=limit, freq=freq,
axis=axis))
filled = getattr(self, fill_method)(limit=limit)
filled = filled.drop(self.grouper.names, axis=1)
fill_grp = filled.groupby(self.grouper.labels)
shifted = fill_grp.shift(periods=periods, freq=freq)
return (filled / shifted) - 1
示例15: head
# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def head(self, n=5):
"""
Returns first n rows of each group.
Essentially equivalent to ``.apply(lambda x: x.head(n))``,
except ignores as_index flag.
%(see_also)s
Examples
--------
>>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]],
columns=['A', 'B'])
>>> df.groupby('A', as_index=False).head(1)
A B
0 1 2
2 5 6
>>> df.groupby('A').head(1)
A B
0 1 2
2 5 6
"""
self._reset_group_selection()
mask = self._cumcount_array() < n
return self._selected_obj[mask]