當前位置: 首頁>>代碼示例>>Python>>正文


Python DataFrame.apply方法代碼示例

本文整理匯總了Python中pandas.core.frame.DataFrame.apply方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.apply方法的具體用法?Python DataFrame.apply怎麽用?Python DataFrame.apply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.frame.DataFrame的用法示例。


在下文中一共展示了DataFrame.apply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cumsum

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumsum(self, axis=0, *args, **kwargs):
        """
        Return SparseDataFrame of cumulative sums over requested axis.

        Parameters
        ----------
        axis : {0, 1}
            0 for row-wise, 1 for column-wise

        Returns
        -------
        y : SparseDataFrame
        """
        nv.validate_cumsum(args, kwargs)

        if axis is None:
            axis = self._stat_axis_number

        return self.apply(lambda x: x.cumsum(), axis=axis) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:frame.py

示例2: applymap

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def applymap(self, func):
        """
        Apply a function to a DataFrame that is intended to operate
        elementwise, i.e. like doing map(func, series) for each series in the
        DataFrame

        Parameters
        ----------
        func : function
            Python function, returns a single value from a single value

        Returns
        -------
        applied : DataFrame
        """
        return self.apply(lambda x: lmap(func, x)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:frame.py

示例3: shift

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def shift(self, periods=1, freq=None, axis=0, fill_value=None):
        """
        Shift each group by periods observations.

        Parameters
        ----------
        periods : integer, default 1
            number of periods to shift
        freq : frequency string
        axis : axis to shift, default 0
        fill_value : optional

            .. versionadded:: 0.24.0
        """

        if freq is not None or axis != 0 or not isna(fill_value):
            return self.apply(lambda x: x.shift(periods, freq,
                                                axis, fill_value))

        return self._get_cythonized_result('group_shift_indexer',
                                           self.grouper, cython_dtype=np.int64,
                                           needs_ngroups=True,
                                           result_is_index=True,
                                           periods=periods) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:groupby.py

示例4: aggregate

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def aggregate(self, func, axis=0, *args, **kwargs):
        # Validate the axis parameter
        self._get_axis_number(axis)
        result, how = self._aggregate(func, *args, **kwargs)
        if result is None:

            # we can be called from an inner function which
            # passes this meta-data
            kwargs.pop('_axis', None)
            kwargs.pop('_level', None)

            # try a regular apply, this evaluates lambdas
            # row-by-row; however if the lambda is expected a Series
            # expression, e.g.: lambda x: x-x.quantile(0.25)
            # this will fail, so we can try a vectorized evaluation

            # we cannot FIRST try the vectorized evaluation, because
            # then .agg and .apply would have different semantics if the
            # operation is actually defined on the Series, e.g. str
            try:
                result = self.apply(func, *args, **kwargs)
            except (ValueError, AttributeError, TypeError):
                result = func(self, *args, **kwargs)

        return result 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:series.py

示例5: aggregate

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def aggregate(self, func, axis=0, *args, **kwargs):
        axis = self._get_axis_number(axis)
        result, how = self._aggregate(func, *args, **kwargs)
        if result is None:

            # we can be called from an inner function which
            # passes this meta-data
            kwargs.pop('_axis', None)
            kwargs.pop('_level', None)

            # try a regular apply, this evaluates lambdas
            # row-by-row; however if the lambda is expected a Series
            # expression, e.g.: lambda x: x-x.quantile(0.25)
            # this will fail, so we can try a vectorized evaluation

            # we cannot FIRST try the vectorized evaluation, becuase
            # then .agg and .apply would have different semantics if the
            # operation is actually defined on the Series, e.g. str
            try:
                result = self.apply(func, *args, **kwargs)
            except (ValueError, AttributeError, TypeError):
                result = func(self, *args, **kwargs)

        return result 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:26,代碼來源:series.py

示例6: count

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def count(self, axis=0, **kwds):
        if axis is None:
            axis = self._stat_axis_number

        return self.apply(lambda x: x.count(), axis=axis) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:frame.py

示例7: __call__

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def __call__(self, *args, **kwargs):
        def f(self):
            return self.plot(*args, **kwargs)
        f.__name__ = 'plot'
        return self._groupby.apply(f) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:groupby.py

示例8: __getattr__

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def __getattr__(self, name):
        def attr(*args, **kwargs):
            def f(self):
                return getattr(self.plot, name)(*args, **kwargs)
            return self._groupby.apply(f)
        return attr 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:groupby.py

示例9: _python_apply_general

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def _python_apply_general(self, f):
        keys, values, mutated = self.grouper.apply(f, self._selected_obj,
                                                   self.axis)

        return self._wrap_applied_output(
            keys,
            values,
            not_indexed_same=mutated or self.mutated) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:10,代碼來源:groupby.py

示例10: describe

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def describe(self, **kwargs):
        with _group_selection_context(self):
            result = self.apply(lambda x: x.describe(**kwargs))
            if self.axis == 1:
                return result.T
            return result.unstack() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:groupby.py

示例11: cumprod

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumprod(self, axis=0, *args, **kwargs):
        """
        Cumulative product for each group.
        """
        nv.validate_groupby_func('cumprod', args, kwargs,
                                 ['numeric_only', 'skipna'])
        if axis != 0:
            return self.apply(lambda x: x.cumprod(axis=axis, **kwargs))

        return self._cython_transform('cumprod', **kwargs) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:12,代碼來源:groupby.py

示例12: cumsum

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cumsum(self, axis=0, *args, **kwargs):
        """
        Cumulative sum for each group.
        """
        nv.validate_groupby_func('cumsum', args, kwargs,
                                 ['numeric_only', 'skipna'])
        if axis != 0:
            return self.apply(lambda x: x.cumsum(axis=axis, **kwargs))

        return self._cython_transform('cumsum', **kwargs) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:12,代碼來源:groupby.py

示例13: cummax

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def cummax(self, axis=0, **kwargs):
        """
        Cumulative max for each group.
        """
        if axis != 0:
            return self.apply(lambda x: np.maximum.accumulate(x, axis))

        return self._cython_transform('cummax', numeric_only=False) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:10,代碼來源:groupby.py

示例14: pct_change

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def pct_change(self, periods=1, fill_method='pad', limit=None, freq=None,
                   axis=0):
        """
        Calculate pct_change of each value to previous entry in group.
        """
        if freq is not None or axis != 0:
            return self.apply(lambda x: x.pct_change(periods=periods,
                                                     fill_method=fill_method,
                                                     limit=limit, freq=freq,
                                                     axis=axis))
        filled = getattr(self, fill_method)(limit=limit)
        filled = filled.drop(self.grouper.names, axis=1)
        fill_grp = filled.groupby(self.grouper.labels)
        shifted = fill_grp.shift(periods=periods, freq=freq)
        return (filled / shifted) - 1 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:17,代碼來源:groupby.py

示例15: head

# 需要導入模塊: from pandas.core.frame import DataFrame [as 別名]
# 或者: from pandas.core.frame.DataFrame import apply [as 別名]
def head(self, n=5):
        """
        Returns first n rows of each group.

        Essentially equivalent to ``.apply(lambda x: x.head(n))``,
        except ignores as_index flag.

        %(see_also)s

        Examples
        --------

        >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]],
                              columns=['A', 'B'])
        >>> df.groupby('A', as_index=False).head(1)
           A  B
        0  1  2
        2  5  6
        >>> df.groupby('A').head(1)
           A  B
        0  1  2
        2  5  6
        """
        self._reset_group_selection()
        mask = self._cumcount_array() < n
        return self._selected_obj[mask] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:28,代碼來源:groupby.py


注:本文中的pandas.core.frame.DataFrame.apply方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。