當前位置: 首頁>>代碼示例>>Python>>正文


Python dtypes.DatetimeTZDtype方法代碼示例

本文整理匯總了Python中pandas.core.dtypes.dtypes.DatetimeTZDtype方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.DatetimeTZDtype方法的具體用法?Python dtypes.DatetimeTZDtype怎麽用?Python dtypes.DatetimeTZDtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.core.dtypes.dtypes的用法示例。


在下文中一共展示了dtypes.DatetimeTZDtype方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_frame_no_datetime64_dtype

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_frame_no_datetime64_dtype(self, tz):
        # after GH#7822
        # these retain the timezones on dict construction
        dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI')
        dr_tz = dr.tz_localize(tz)
        df = DataFrame({'A': 'foo', 'B': dr_tz}, index=dr)
        tz_expected = DatetimeTZDtype('ns', dr_tz.tzinfo)
        assert df['B'].dtype == tz_expected

        # GH#2810 (with timezones)
        datetimes_naive = [ts.to_pydatetime() for ts in dr]
        datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
        df = DataFrame({'dr': dr,
                        'dr_tz': dr_tz,
                        'datetimes_naive': datetimes_naive,
                        'datetimes_with_tz': datetimes_with_tz})
        result = df.get_dtype_counts().sort_index()
        expected = Series({'datetime64[ns]': 2,
                           str(tz_expected): 2}).sort_index()
        tm.assert_series_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_timezones.py

示例2: _add_datetimelike_scalar

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def _add_datetimelike_scalar(self, other):
        # adding a timedeltaindex to a datetimelike
        from pandas.core.arrays import DatetimeArray

        assert other is not NaT
        other = Timestamp(other)
        if other is NaT:
            # In this case we specifically interpret NaT as a datetime, not
            # the timedelta interpretation we would get by returning self + NaT
            result = self.asi8.view('m8[ms]') + NaT.to_datetime64()
            return DatetimeArray(result)

        i8 = self.asi8
        result = checked_add_with_arr(i8, other.value,
                                      arr_mask=self._isnan)
        result = self._maybe_mask_results(result)
        dtype = DatetimeTZDtype(tz=other.tz) if other.tz else _NS_DTYPE
        return DatetimeArray(result, dtype=dtype, freq=self.freq) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:timedeltas.py

示例3: _get_dtype

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def _get_dtype(self, sqltype):
        from sqlalchemy.types import (Integer, Float, Boolean, DateTime,
                                      Date, TIMESTAMP)

        if isinstance(sqltype, Float):
            return float
        elif isinstance(sqltype, Integer):
            # TODO: Refine integer size.
            return np.dtype('int64')
        elif isinstance(sqltype, TIMESTAMP):
            # we have a timezone capable type
            if not sqltype.timezone:
                return datetime
            return DatetimeTZDtype
        elif isinstance(sqltype, DateTime):
            # Caution: np.datetime64 is also a subclass of np.number.
            return datetime
        elif isinstance(sqltype, Date):
            return date
        elif isinstance(sqltype, Boolean):
            return bool
        return object 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:sql.py

示例4: test_frame_no_datetime64_dtype

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_frame_no_datetime64_dtype(self):

        # after 7822
        # these retain the timezones on dict construction

        dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI')
        dr_tz = dr.tz_localize(self.tzstr('US/Eastern'))
        e = DataFrame({'A': 'foo', 'B': dr_tz}, index=dr)
        tz_expected = DatetimeTZDtype('ns', dr_tz.tzinfo)
        assert e['B'].dtype == tz_expected

        # GH 2810 (with timezones)
        datetimes_naive = [ts.to_pydatetime() for ts in dr]
        datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
        df = DataFrame({'dr': dr,
                        'dr_tz': dr_tz,
                        'datetimes_naive': datetimes_naive,
                        'datetimes_with_tz': datetimes_with_tz})
        result = df.get_dtype_counts().sort_index()
        expected = Series({'datetime64[ns]': 2,
                           str(tz_expected): 2}).sort_index()
        assert_series_equal(result, expected) 
開發者ID:securityclippy,項目名稱:elasticintel,代碼行數:24,代碼來源:test_timezones.py

示例5: dtype

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def dtype(request):
    return DatetimeTZDtype(unit="ns", tz=request.param) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:4,代碼來源:test_datetime.py

示例6: test_mismatched_timezone_raises

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_mismatched_timezone_raises(self):
        arr = DatetimeArray(np.array(['2000-01-01T06:00:00'], dtype='M8[ns]'),
                            dtype=DatetimeTZDtype(tz='US/Central'))
        dtype = DatetimeTZDtype(tz='US/Eastern')
        with pytest.raises(TypeError, match='Timezone of the array'):
            DatetimeArray(arr, dtype=dtype) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_datetimes.py

示例7: test_astype_to_same

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_astype_to_same(self):
        arr = DatetimeArray._from_sequence(['2000'], tz='US/Central')
        result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
        assert result is arr 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:6,代碼來源:test_datetimes.py

示例8: test_setitem_different_tz_raises

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_setitem_different_tz_raises(self):
        data = np.array([1, 2, 3], dtype='M8[ns]')
        arr = DatetimeArray(data, copy=False,
                            dtype=DatetimeTZDtype(tz="US/Central"))
        with pytest.raises(ValueError, match="None"):
            arr[0] = pd.Timestamp('2000')

        with pytest.raises(ValueError, match="US/Central"):
            arr[0] = pd.Timestamp('2000', tz="US/Eastern") 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_datetimes.py

示例9: test_tz_dtype_mismatch_raises

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def test_tz_dtype_mismatch_raises(self):
        arr = DatetimeArray._from_sequence(['2000'], tz='US/Central')
        with pytest.raises(TypeError, match='data is already tz-aware'):
            sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC")) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:6,代碼來源:test_datetimes.py

示例10: _simple_new

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def _simple_new(cls, values, name=None, freq=None, tz=None, dtype=None):
        """
        we require the we have a dtype compat for the values
        if we are passed a non-dtype compat, then coerce using the constructor
        """
        if isinstance(values, DatetimeArray):
            if tz:
                tz = validate_tz_from_dtype(dtype, tz)
                dtype = DatetimeTZDtype(tz=tz)
            elif dtype is None:
                dtype = _NS_DTYPE

            values = DatetimeArray(values, freq=freq, dtype=dtype)
            tz = values.tz
            freq = values.freq
            values = values._data

        # DatetimeArray._simple_new will accept either i8 or M8[ns] dtypes
        if isinstance(values, DatetimeIndex):
            values = values._data

        dtype = tz_to_dtype(tz)
        dtarr = DatetimeArray._simple_new(values, freq=freq, dtype=dtype)
        assert isinstance(dtarr, DatetimeArray)

        result = object.__new__(cls)
        result._data = dtarr
        result.name = name
        # For groupby perf. See note in indexes/base about _index_data
        result._index_data = dtarr._data
        result._reset_identity()
        return result

    # -------------------------------------------------------------------- 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:36,代碼來源:datetimes.py

示例11: _harmonize_columns

# 需要導入模塊: from pandas.core.dtypes import dtypes [as 別名]
# 或者: from pandas.core.dtypes.dtypes import DatetimeTZDtype [as 別名]
def _harmonize_columns(self, parse_dates=None):
        """
        Make the DataFrame's column types align with the SQL table
        column types.
        Need to work around limited NA value support. Floats are always
        fine, ints must always be floats if there are Null values.
        Booleans are hard because converting bool column with None replaces
        all Nones with false. Therefore only convert bool if there are no
        NA values.
        Datetimes should already be converted to np.datetime64 if supported,
        but here we also force conversion if required.
        """
        parse_dates = _process_parse_dates_argument(parse_dates)

        for sql_col in self.table.columns:
            col_name = sql_col.name
            try:
                df_col = self.frame[col_name]

                # Handle date parsing upfront; don't try to convert columns
                # twice
                if col_name in parse_dates:
                    try:
                        fmt = parse_dates[col_name]
                    except TypeError:
                        fmt = None
                    self.frame[col_name] = _handle_date_column(
                        df_col, format=fmt)
                    continue

                # the type the dataframe column should have
                col_type = self._get_dtype(sql_col.type)

                if (col_type is datetime or col_type is date or
                        col_type is DatetimeTZDtype):
                    # Convert tz-aware Datetime SQL columns to UTC
                    utc = col_type is DatetimeTZDtype
                    self.frame[col_name] = _handle_date_column(df_col, utc=utc)
                elif col_type is float:
                    # floats support NA, can always convert!
                    self.frame[col_name] = df_col.astype(col_type, copy=False)

                elif len(df_col) == df_col.count():
                    # No NA values, can convert ints and bools
                    if col_type is np.dtype('int64') or col_type is bool:
                        self.frame[col_name] = df_col.astype(
                            col_type, copy=False)
            except KeyError:
                pass  # this column not in results 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:51,代碼來源:sql.py


注:本文中的pandas.core.dtypes.dtypes.DatetimeTZDtype方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。