本文整理匯總了Python中pandas.compat.u_safe方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.u_safe方法的具體用法?Python compat.u_safe怎麽用?Python compat.u_safe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.u_safe方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: normalize
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def normalize(self, form):
"""
Return the Unicode normal form for the strings in the Series/Index.
For more information on the forms, see the
:func:`unicodedata.normalize`.
Parameters
----------
form : {'NFC', 'NFKC', 'NFD', 'NFKD'}
Unicode form
Returns
-------
normalized : Series/Index of objects
"""
import unicodedata
f = lambda x: unicodedata.normalize(form, compat.u_safe(x))
result = _na_map(f, self._parent)
return self._wrap_result(result)
示例2: normalize
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def normalize(self, form):
"""Return the Unicode normal form for the strings in the Series/Index.
For more information on the forms, see the
:func:`unicodedata.normalize`.
Parameters
----------
form : {'NFC', 'NFKC', 'NFD', 'NFKD'}
Unicode form
Returns
-------
normalized : Series/Index of objects
"""
import unicodedata
f = lambda x: unicodedata.normalize(form, compat.u_safe(x))
result = _na_map(f, self._data)
return self._wrap_result(result)
示例3: validate_col
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def validate_col(self, itemsize=None):
""" validate this column: return the compared against itemsize """
# validate this column for string truncation (or reset to the max size)
if _ensure_decoded(self.kind) == u('string'):
c = self.col
if c is not None:
if itemsize is None:
itemsize = self.itemsize
if c.itemsize < itemsize:
raise ValueError(
"Trying to store a string with len [%s] in [%s] "
"column but\nthis column has a limit of [%s]!\n"
"Consider using min_itemsize to preset the sizes on "
"these columns" % (itemsize, self.cname, c.itemsize))
return c.itemsize
return None
示例4: set_kind
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def set_kind(self):
# set my kind if we can
if self.dtype is not None:
dtype = _ensure_decoded(self.dtype)
if dtype.startswith(u('string')) or dtype.startswith(u('bytes')):
self.kind = 'string'
elif dtype.startswith(u('float')):
self.kind = 'float'
elif dtype.startswith(u('int')) or dtype.startswith(u('uint')):
self.kind = 'integer'
elif dtype.startswith(u('date')):
self.kind = 'datetime'
elif dtype.startswith(u('timedelta')):
self.kind = 'timedelta'
elif dtype.startswith(u('bool')):
self.kind = 'bool'
else:
raise AssertionError(
"cannot interpret dtype of [%s] in [%s]" % (dtype, self))
# set my typ if we need
if self.typ is None:
self.typ = getattr(self.description, self.cname, None)
示例5: _unconvert_index
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def _unconvert_index(data, kind, encoding=None):
kind = _ensure_decoded(kind)
if kind == u('datetime64'):
index = DatetimeIndex(data)
elif kind == u('datetime'):
index = np.array([datetime.fromtimestamp(v) for v in data],
dtype=object)
elif kind == u('date'):
try:
index = np.array(
[date.fromordinal(v) for v in data], dtype=object)
except (ValueError):
index = np.array(
[date.fromtimestamp(v) for v in data], dtype=object)
elif kind in (u('integer'), u('float')):
index = np.array(data)
elif kind in (u('string')):
index = _unconvert_string_array(data, nan_rep=None, encoding=encoding)
elif kind == u('object'):
index = np.array(data[0])
else: # pragma: no cover
raise ValueError('unrecognized index type %s' % kind)
return index
示例6: _unconvert_index
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def _unconvert_index(data, kind, encoding=None):
kind = _ensure_decoded(kind)
if kind == u('datetime64'):
index = DatetimeIndex(data)
elif kind == u('timedelta64'):
index = TimedeltaIndex(data)
elif kind == u('datetime'):
index = np.asarray([datetime.fromtimestamp(v) for v in data],
dtype=object)
elif kind == u('date'):
try:
index = np.asarray(
[date.fromordinal(v) for v in data], dtype=object)
except (ValueError):
index = np.asarray(
[date.fromtimestamp(v) for v in data], dtype=object)
elif kind in (u('integer'), u('float')):
index = np.asarray(data)
elif kind in (u('string')):
index = _unconvert_string_array(data, nan_rep=None, encoding=encoding)
elif kind == u('object'):
index = np.asarray(data[0])
else: # pragma: no cover
raise ValueError('unrecognized index type %s' % kind)
return index
示例7: groups
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def groups(self):
"""return a list of all the top-level nodes (that are not themselves a
pandas storage object)
"""
_tables()
self._check_if_open()
return [
g for g in self._handle.walk_nodes()
if (not isinstance(g, _table_mod.link.Link) and
(getattr(g._v_attrs, 'pandas_type', None) or
getattr(g, 'table', None) or
(isinstance(g, _table_mod.table.Table) and
g._v_name != u('table'))))
]
示例8: maybe_set_size
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def maybe_set_size(self, min_itemsize=None, **kwargs):
""" maybe set a string col itemsize:
min_itemsize can be an integer or a dict with this columns name
with an integer size """
if _ensure_decoded(self.kind) == u('string'):
if isinstance(min_itemsize, dict):
min_itemsize = min_itemsize.get(self.name)
if min_itemsize is not None and self.typ.itemsize < min_itemsize:
self.typ = _tables(
).StringCol(itemsize=min_itemsize, pos=self.pos)
示例9: __init__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def __init__(self, values=None, kind=None, typ=None,
cname=None, data=None, meta=None, metadata=None,
block=None, **kwargs):
super(DataCol, self).__init__(values=values, kind=kind, typ=typ,
cname=cname, **kwargs)
self.dtype = None
self.dtype_attr = u("%s_dtype" % self.name)
self.meta = meta
self.meta_attr = u("%s_meta" % self.name)
self.set_data(data)
self.set_metadata(metadata)
示例10: read_array
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def read_array(self, key, start=None, stop=None):
""" read an array for the specified node (off of group """
import tables
node = getattr(self.group, key)
attrs = node._v_attrs
transposed = getattr(attrs, 'transposed', False)
if isinstance(node, tables.VLArray):
ret = node[0][start:stop]
else:
dtype = getattr(attrs, 'value_type', None)
shape = getattr(attrs, 'shape', None)
if shape is not None:
# length 0 axis
ret = np.empty(shape, dtype=dtype)
else:
ret = node[start:stop]
if dtype == u('datetime64'):
# reconstruct a timezone if indicated
ret = _set_tz(ret, getattr(attrs, 'tz', None), coerce=True)
elif dtype == u('timedelta64'):
ret = np.asarray(ret, dtype='m8[ns]')
if transposed:
return ret.T
else:
return ret
示例11: read_index
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def read_index(self, key, **kwargs):
variety = _ensure_decoded(getattr(self.attrs, '%s_variety' % key))
if variety == u('multi'):
return self.read_multi_index(key, **kwargs)
elif variety == u('block'):
return self.read_block_index(key, **kwargs)
elif variety == u('sparseint'):
return self.read_sparse_intindex(key, **kwargs)
elif variety == u('regular'):
_, index = self.read_index_node(getattr(self.group, key), **kwargs)
return index
else: # pragma: no cover
raise TypeError('unrecognized index variety: %s' % variety)
示例12: read_index_node
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def read_index_node(self, node, start=None, stop=None):
data = node[start:stop]
# If the index was an empty array write_array_empty() will
# have written a sentinel. Here we relace it with the original.
if ('shape' in node._v_attrs and
self._is_empty_array(getattr(node._v_attrs, 'shape'))):
data = np.empty(getattr(node._v_attrs, 'shape'),
dtype=getattr(node._v_attrs, 'value_type'))
kind = _ensure_decoded(node._v_attrs.kind)
name = None
if 'name' in node._v_attrs:
name = _ensure_str(node._v_attrs.name)
index_class = self._alias_to_class(_ensure_decoded(
getattr(node._v_attrs, 'index_class', '')))
factory = self._get_index_factory(index_class)
kwargs = {}
if u('freq') in node._v_attrs:
kwargs['freq'] = node._v_attrs['freq']
if u('tz') in node._v_attrs:
kwargs['tz'] = node._v_attrs['tz']
if kind in (u('date'), u('datetime')):
index = factory(_unconvert_index(data, kind,
encoding=self.encoding,
errors=self.errors),
dtype=object, **kwargs)
else:
index = factory(_unconvert_index(data, kind,
encoding=self.encoding,
errors=self.errors), **kwargs)
index.name = name
return name, index
示例13: read
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def read(self, **kwargs):
kwargs = self.validate_read(kwargs)
index = self.read_index('index')
sp_values = self.read_array('sp_values')
sp_index = self.read_index('sp_index')
return SparseSeries(sp_values, index=index, sparse_index=sp_index,
kind=self.kind or u('block'),
fill_value=self.fill_value,
name=self.name)
示例14: is_exists
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def is_exists(self):
""" has this table been created """
return u('table') in self.group
示例15: _unconvert_index
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u_safe [as 別名]
def _unconvert_index(data, kind, encoding=None, errors='strict'):
kind = _ensure_decoded(kind)
if kind == u('datetime64'):
index = DatetimeIndex(data)
elif kind == u('timedelta64'):
index = TimedeltaIndex(data)
elif kind == u('datetime'):
index = np.asarray([datetime.fromtimestamp(v) for v in data],
dtype=object)
elif kind == u('date'):
try:
index = np.asarray(
[date.fromordinal(v) for v in data], dtype=object)
except (ValueError):
index = np.asarray(
[date.fromtimestamp(v) for v in data], dtype=object)
elif kind in (u('integer'), u('float')):
index = np.asarray(data)
elif kind in (u('string')):
index = _unconvert_string_array(data, nan_rep=None, encoding=encoding,
errors=errors)
elif kind == u('object'):
index = np.asarray(data[0])
else: # pragma: no cover
raise ValueError('unrecognized index type %s' % kind)
return index