本文整理匯總了Python中pandas.compat.u方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.u方法的具體用法?Python compat.u怎麽用?Python compat.u使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.u方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_repr
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_repr(self):
i = RangeIndex(5, name='Foo')
result = repr(i)
if PY3:
expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')"
else:
expected = "RangeIndex(start=0, stop=5, step=1, name=u'Foo')"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
i = RangeIndex(5, 0, -1)
result = repr(i)
expected = "RangeIndex(start=5, stop=0, step=-1)"
assert result == expected
result = eval(result)
tm.assert_index_equal(result, i, exact=True)
示例2: test_categorical_repr
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_categorical_repr(self):
a = Series(Categorical([1, 2, 3, 4]))
exp = u("0 1\n1 2\n2 3\n3 4\n" +
"dtype: category\nCategories (4, int64): [1, 2, 3, 4]")
assert exp == a.__unicode__()
a = Series(Categorical(["a", "b"] * 25))
exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" +
"Length: 50, dtype: category\nCategories (2, object): [a, b]")
with option_context("display.max_rows", 5):
assert exp == repr(a)
levs = list("abcdefghijklmnopqrstuvwxyz")
a = Series(Categorical(["a", "b"], categories=levs, ordered=True))
exp = u("0 a\n1 b\n" + "dtype: category\n"
"Categories (26, object): [a < b < c < d ... w < x < y < z]")
assert exp == a.__unicode__()
示例3: test_title
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_title(self):
values = Series(["FOO", "BAR", NA, "Blah", "blurg"])
result = values.str.title()
exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None,
1, 2.])
mixed = mixed.str.title()
exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA])
tm.assert_almost_equal(mixed, exp)
# unicode
values = Series([u("FOO"), NA, u("bar"), u("Blurg")])
results = values.str.title()
exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")])
tm.assert_series_equal(results, exp)
示例4: test_capitalize
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_capitalize(self):
values = Series(["FOO", "BAR", NA, "Blah", "blurg"])
result = values.str.capitalize()
exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"])
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None,
1, 2.])
mixed = mixed.str.capitalize()
exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA])
tm.assert_almost_equal(mixed, exp)
# unicode
values = Series([u("FOO"), NA, u("bar"), u("Blurg")])
results = values.str.capitalize()
exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")])
tm.assert_series_equal(results, exp)
示例5: test_join
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_join(self):
values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
result = values.str.split('_').str.join('_')
tm.assert_series_equal(values, result)
# mixed
mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(),
'foo', None, 1, 2.])
rs = Series(mixed).str.split('_').str.join('_')
xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# unicode
values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')])
result = values.str.split('_').str.join('_')
tm.assert_series_equal(values, result)
示例6: test_len
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_len(self):
values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo'])
result = values.str.len()
exp = values.map(lambda x: len(x) if notna(x) else NA)
tm.assert_series_equal(result, exp)
# mixed
mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(),
'foo', None, 1, 2.])
rs = Series(mixed).str.len()
xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# unicode
values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u(
'fooooooo')])
result = values.str.len()
exp = values.map(lambda x: len(x) if notna(x) else NA)
tm.assert_series_equal(result, exp)
示例7: test_findall
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_findall(self):
values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD'])
result = values.str.findall('BAD[_]*')
exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']])
tm.assert_almost_equal(result, exp)
# mixed
mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(),
'BAD', None, 1, 2.])
rs = Series(mixed).str.findall('BAD[_]*')
xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA])
assert isinstance(rs, Series)
tm.assert_almost_equal(rs, xp)
# unicode
values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')])
result = values.str.findall('BAD[_]*')
exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]])
tm.assert_almost_equal(result, exp)
示例8: test_wrap
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_wrap(self):
# test values are: two words less than width, two words equal to width,
# two words greater than width, one word less than width, one word
# equal to width, one word greater than width, multiple tokens with
# trailing whitespace equal to width
values = Series([u('hello world'), u('hello world!'), u(
'hello world!!'), u('abcdefabcde'), u('abcdefabcdef'), u(
'abcdefabcdefa'), u('ab ab ab ab '), u('ab ab ab ab a'), u(
'\t')])
# expected values
xp = Series([u('hello world'), u('hello world!'), u('hello\nworld!!'),
u('abcdefabcde'), u('abcdefabcdef'), u('abcdefabcdef\na'),
u('ab ab ab ab'), u('ab ab ab ab\na'), u('')])
rs = values.str.wrap(12, break_long_words=True)
assert_series_equal(rs, xp)
# test with pre and post whitespace (non-unicode), NaN, and non-ascii
# Unicode
values = Series([' pre ', np.nan, u('\xac\u20ac\U00008000 abadcafe')
])
xp = Series([' pre', NA, u('\xac\u20ac\U00008000 ab\nadcafe')])
rs = values.str.wrap(6)
assert_series_equal(rs, xp)
示例9: test_encode_decode_errors
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_encode_decode_errors(self):
encodeBase = Series([u('a'), u('b'), u('a\x9d')])
pytest.raises(UnicodeEncodeError, encodeBase.str.encode, 'cp1252')
f = lambda x: x.encode('cp1252', 'ignore')
result = encodeBase.str.encode('cp1252', 'ignore')
exp = encodeBase.map(f)
tm.assert_series_equal(result, exp)
decodeBase = Series([b'a', b'b', b'a\x9d'])
pytest.raises(UnicodeDecodeError, decodeBase.str.decode, 'cp1252')
f = lambda x: x.decode('cp1252', 'ignore')
result = decodeBase.str.decode('cp1252', 'ignore')
exp = decodeBase.map(f)
tm.assert_series_equal(result, exp)
示例10: test_normalize
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_normalize(self):
values = ['ABC', u'ABC', u'123', np.nan, u'アイエ']
s = Series(values, index=['a', 'b', 'c', 'd', 'e'])
normed = [u'ABC', u'ABC', u'123', np.nan, u'アイエ']
expected = Series(normed, index=['a', 'b', 'c', 'd', 'e'])
result = s.str.normalize('NFKC')
tm.assert_series_equal(result, expected)
expected = Series([u'ABC', u'ABC', u'123', np.nan, u'アイエ'],
index=['a', 'b', 'c', 'd', 'e'])
result = s.str.normalize('NFC')
tm.assert_series_equal(result, expected)
with pytest.raises(ValueError, match="invalid normalization form"):
s.str.normalize('xxx')
s = Index([u'ABC', u'123', u'アイエ'])
expected = Index([u'ABC', u'123', u'アイエ'])
result = s.str.normalize('NFKC')
tm.assert_index_equal(result, expected)
示例11: test_unstack_level_binding
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_unstack_level_binding(self):
# GH9856
mi = pd.MultiIndex(
levels=[[u('foo'), u('bar')], [u('one'), u('two')],
[u('a'), u('b')]],
codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]],
names=[u('first'), u('second'), u('third')])
s = pd.Series(0, index=mi)
result = s.unstack([1, 2]).stack(0)
expected_mi = pd.MultiIndex(
levels=[['foo', 'bar'], ['one', 'two']],
codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=['first', 'second'])
expected = pd.DataFrame(np.array([[np.nan, 0],
[0, np.nan],
[np.nan, 0],
[0, np.nan]],
dtype=np.float64),
index=expected_mi,
columns=pd.Index(['a', 'b'], name='third'))
assert_frame_equal(result, expected)
示例12: test_isna_lists
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_isna_lists(self):
result = isna([[False]])
exp = np.array([[False]])
tm.assert_numpy_array_equal(result, exp)
result = isna([[1], [2]])
exp = np.array([[False], [False]])
tm.assert_numpy_array_equal(result, exp)
# list of strings / unicode
result = isna(['foo', 'bar'])
exp = np.array([False, False])
tm.assert_numpy_array_equal(result, exp)
result = isna([u('foo'), u('bar')])
exp = np.array([False, False])
tm.assert_numpy_array_equal(result, exp)
# GH20675
result = isna([np.NaN, 'world'])
exp = np.array([True, False])
tm.assert_numpy_array_equal(result, exp)
示例13: test_is_scalar_builtin_scalars
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_is_scalar_builtin_scalars(self):
assert is_scalar(None)
assert is_scalar(True)
assert is_scalar(False)
assert is_scalar(Number())
assert is_scalar(Fraction())
assert is_scalar(0.)
assert is_scalar(np.nan)
assert is_scalar('foobar')
assert is_scalar(b'foobar')
assert is_scalar(u('efoobar'))
assert is_scalar(datetime(2014, 1, 1))
assert is_scalar(date(2014, 1, 1))
assert is_scalar(time(12, 0))
assert is_scalar(timedelta(hours=1))
assert is_scalar(pd.NaT)
示例14: test_read_write_dta11
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_read_write_dta11(self):
original = DataFrame([(1, 2, 3, 4)],
columns=['good', compat.u('b\u00E4d'), '8number',
'astringwithmorethan32characters______'])
formatted = DataFrame([(1, 2, 3, 4)],
columns=['good', 'b_d', '_8number',
'astringwithmorethan32characters_'])
formatted.index.name = 'index'
formatted = formatted.astype(np.int32)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(pd.io.stata.InvalidColumnName):
original.to_stata(path, None)
written_and_read_again = self.read_dta(path)
tm.assert_frame_equal(
written_and_read_again.set_index('index'), formatted)
示例15: test_invalid_variable_labels
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import u [as 別名]
def test_invalid_variable_labels(self, version):
original = pd.DataFrame({'a': [1, 2, 3, 4],
'b': [1.0, 3.0, 27.0, 81.0],
'c': ['Atlanta', 'Birmingham',
'Cincinnati', 'Detroit']})
original.index.name = 'index'
variable_labels = {'a': 'very long' * 10,
'b': 'City Exponent',
'c': 'City'}
with tm.ensure_clean() as path:
msg = "Variable labels must be 80 characters or fewer"
with pytest.raises(ValueError, match=msg):
original.to_stata(path,
variable_labels=variable_labels,
version=version)
variable_labels['a'] = u'invalid character Œ'
with tm.ensure_clean() as path:
msg = ("Variable labels must contain only characters that can be"
" encoded in Latin-1")
with pytest.raises(ValueError, match=msg):
original.to_stata(path,
variable_labels=variable_labels,
version=version)