本文整理匯總了Python中pandas.compat.string_types方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.string_types方法的具體用法?Python compat.string_types怎麽用?Python compat.string_types使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.string_types方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _convert_1d
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def _convert_1d(values, units, axis):
if not hasattr(axis, 'freq'):
raise TypeError('Axis must have `freq` set to convert to Periods')
valid_types = (compat.string_types, datetime,
Period, pydt.date, pydt.time, np.datetime64)
if (isinstance(values, valid_types) or is_integer(values) or
is_float(values)):
return get_datevalue(values, axis.freq)
elif isinstance(values, PeriodIndex):
return values.asfreq(axis.freq)._ndarray_values
elif isinstance(values, Index):
return values.map(lambda x: get_datevalue(x, axis.freq))
elif lib.infer_dtype(values, skipna=False) == 'period':
# https://github.com/pandas-dev/pandas/issues/24304
# convert ndarray[period] -> PeriodIndex
return PeriodIndex(values, freq=axis.freq)._ndarray_values
elif isinstance(values, (list, tuple, np.ndarray, Index)):
return [get_datevalue(x, axis.freq) for x in values]
return values
示例2: get_finder
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def get_finder(freq):
if isinstance(freq, compat.string_types):
freq = get_freq(freq)
fgroup = resolution.get_freq_group(freq)
if fgroup == FreqGroup.FR_ANN:
return _annual_finder
elif fgroup == FreqGroup.FR_QTR:
return _quarterly_finder
elif freq == FreqGroup.FR_MTH:
return _monthly_finder
elif ((freq >= FreqGroup.FR_BUS) or fgroup == FreqGroup.FR_WK):
return _daily_finder
else: # pragma: no cover
errmsg = "Unsupported frequency: {freq}".format(freq=freq)
raise NotImplementedError(errmsg)
示例3: __eq__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def __eq__(self, other):
if isinstance(other, compat.string_types):
from pandas.tseries.frequencies import to_offset
try:
# GH#23524 if to_offset fails, we are dealing with an
# incomparable type so == is False and != is True
other = to_offset(other)
except ValueError:
# e.g. "infer"
return False
if isinstance(other, Tick):
return self.delta == other.delta
else:
return False
# This is identical to DateOffset.__hash__, but has to be redefined here
# for Python 3, because we've redefined __eq__.
示例4: test_iter
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def test_iter(self):
# GH3638
strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel'
ds = Series(strs)
for s in ds.str:
# iter must yield a Series
assert isinstance(s, Series)
# indices of each yielded Series should be equal to the index of
# the original Series
tm.assert_index_equal(s.index, ds.index)
for el in s:
# each element of the series is either a basestring/str or nan
assert isinstance(el, compat.string_types) or isna(el)
# desired behavior is to iterate until everything would be nan on the
# next iter so make sure the last element of the iterator was 'l' in
# this case since 'wikitravel' is the longest string
assert s.dropna().values.item() == 'l'
示例5: test_encoding
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def test_encoding(self, version):
# GH 4626, proper encoding handling
raw = read_stata(self.dta_encoding)
with tm.assert_produces_warning(FutureWarning):
encoded = read_stata(self.dta_encoding, encoding='latin-1')
result = encoded.kreis1849[0]
expected = raw.kreis1849[0]
assert result == expected
assert isinstance(result, compat.string_types)
with tm.ensure_clean() as path:
with tm.assert_produces_warning(FutureWarning):
encoded.to_stata(path, write_index=False, version=version,
encoding='latin-1')
reread_encoded = read_stata(path)
tm.assert_frame_equal(encoded, reread_encoded)
示例6: test_to_html
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def test_to_html(biggie_df_fixture):
# TODO: split this test
df = biggie_df_fixture
s = df.to_html()
buf = StringIO()
retval = df.to_html(buf=buf)
assert retval is None
assert buf.getvalue() == s
assert isinstance(s, compat.string_types)
df.to_html(columns=['B', 'A'], col_space=17)
df.to_html(columns=['B', 'A'],
formatters={'A': lambda x: '{x:.1f}'.format(x=x)})
df.to_html(columns=['B', 'A'], float_format=str)
df.to_html(columns=['B', 'A'], col_space=12, float_format=str)
示例7: test_datetime
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def test_datetime(self):
df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3),
'B': np.arange(3.0)})
df.to_sql('test_datetime', self.conn)
# with read_table -> type information from schema used
result = sql.read_sql_table('test_datetime', self.conn)
result = result.drop('index', axis=1)
tm.assert_frame_equal(result, df)
# with read_sql -> no type information -> sqlite has no native
result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn)
result = result.drop('index', axis=1)
if self.flavor == 'sqlite':
assert isinstance(result.loc[0, 'A'], string_types)
result['A'] = to_datetime(result['A'])
tm.assert_frame_equal(result, df)
else:
tm.assert_frame_equal(result, df)
示例8: validate
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def validate(self):
super(Window, self).validate()
window = self.window
if isinstance(window, (list, tuple, np.ndarray)):
pass
elif is_integer(window):
if window <= 0:
raise ValueError("window must be > 0 ")
try:
import scipy.signal as sig
except ImportError:
raise ImportError('Please install scipy to generate window '
'weight')
if not isinstance(self.win_type, compat.string_types):
raise ValueError('Invalid win_type {0}'.format(self.win_type))
if getattr(sig, self.win_type, None) is None:
raise ValueError('Invalid win_type {0}'.format(self.win_type))
else:
raise ValueError('Invalid window {0}'.format(window))
示例9: _apply
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def _apply(self, func, name, window=None, center=None,
check_minp=None, **kwargs):
"""
Dispatch to apply; we are stripping all of the _apply kwargs and
performing the original function call on the grouped object.
"""
def f(x, name=name, *args):
x = self._shallow_copy(x)
if isinstance(name, compat.string_types):
return getattr(x, name)(*args, **kwargs)
return x.apply(name, *args, **kwargs)
return self._groupby.apply(f)
示例10: searchsorted
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def searchsorted(self, value, side='left', sorter=None):
if isinstance(value, Period):
if value.freq != self.freq:
msg = DIFFERENT_FREQ.format(cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=value.freqstr)
raise IncompatibleFrequency(msg)
value = value.ordinal
elif isinstance(value, compat.string_types):
try:
value = Period(value, freq=self.freq).ordinal
except DateParseError:
raise KeyError("Cannot interpret '{}' as period".format(value))
return self._ndarray_values.searchsorted(value, side=side,
sorter=sorter)
示例11: _validate_where
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def _validate_where(w):
"""
Validate that the where statement is of the right type.
The type may either be String, Expr, or list-like of Exprs.
Parameters
----------
w : String term expression, Expr, or list-like of Exprs.
Returns
-------
where : The original where clause if the check was successful.
Raises
------
TypeError : An invalid data type was passed in for w (e.g. dict).
"""
if not (isinstance(w, (Expr, string_types)) or is_list_like(w)):
raise TypeError("where must be passed as a string, Expr, "
"or list-like of Exprs")
return w
示例12: update
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def update(self, value):
"""
search order for local (i.e., @variable) variables:
scope, key_variable
[('locals', 'local_name'),
('globals', 'local_name'),
('locals', 'key'),
('globals', 'key')]
"""
key = self.name
# if it's a variable name (otherwise a constant)
if isinstance(key, string_types):
self.env.swapkey(self.local_name, key, new_value=value)
self.value = value
示例13: _get_partial_string_timestamp_match_key
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def _get_partial_string_timestamp_match_key(self, key, labels):
"""Translate any partial string timestamp matches in key, returning the
new key (GH 10331)"""
if isinstance(labels, MultiIndex):
if (isinstance(key, compat.string_types) and
labels.levels[0].is_all_dates):
# Convert key '2016-01-01' to
# ('2016-01-01'[, slice(None, None, None)]+)
key = tuple([key] + [slice(None)] * (len(labels.levels) - 1))
if isinstance(key, tuple):
# Convert (..., '2016-01-01', ...) in tuple to
# (..., slice('2016-01-01', '2016-01-01', None), ...)
new_key = []
for i, component in enumerate(key):
if (isinstance(component, compat.string_types) and
labels.levels[i].is_all_dates):
new_key.append(slice(component, component, None))
else:
new_key.append(component)
key = tuple(new_key)
return key
示例14: convert_to_index_sliceable
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def convert_to_index_sliceable(obj, key):
"""
if we are index sliceable, then return my slicer, otherwise return None
"""
idx = obj.index
if isinstance(key, slice):
return idx._convert_slice_indexer(key, kind='getitem')
elif isinstance(key, compat.string_types):
# we are an actual column
if obj._data.items.contains(key):
return None
# We might have a datetimelike string that we can translate to a
# slice here via partial string indexing
if idx.is_all_dates:
try:
return idx._get_string_slice(key)
except (KeyError, ValueError, NotImplementedError):
return None
return None
示例15: aggregate
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import string_types [as 別名]
def aggregate(self, arg, *args, **kwargs):
"""
Aggregate using input function or dict of {column -> function}
Parameters
----------
arg : function or dict
Function to use for aggregating groups. If a function, must either
work when passed a Panel or when passed to Panel.apply. If
pass a dict, the keys must be DataFrame column names
Returns
-------
aggregated : Panel
"""
if isinstance(arg, compat.string_types):
return getattr(self, arg)(*args, **kwargs)
return self._aggregate_generic(arg, *args, **kwargs)