本文整理匯總了Python中pandas.compat.range方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.range方法的具體用法?Python compat.range怎麽用?Python compat.range使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.range方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def apply(self, other):
if self._use_relativedelta:
other = as_datetime(other)
if len(self.kwds) > 0:
tzinfo = getattr(other, 'tzinfo', None)
if tzinfo is not None and self._use_relativedelta:
# perform calculation in UTC
other = other.replace(tzinfo=None)
if self.n > 0:
for i in range(self.n):
other = other + self._offset
else:
for i in range(-self.n):
other = other - self._offset
if tzinfo is not None and self._use_relativedelta:
# bring tz back from UTC calculation
other = conversion.localize_pydatetime(other, tzinfo)
return as_timestamp(other)
else:
return other + timedelta(self.n)
示例2: test_agg_consistency
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_agg_consistency(self):
df = DataFrame({'A': range(5), 'B': range(0, 10, 2)})
r = df.rolling(window=3)
result = r.agg([np.sum, np.mean]).columns
expected = pd.MultiIndex.from_product([list('AB'), ['sum', 'mean']])
tm.assert_index_equal(result, expected)
result = r['A'].agg([np.sum, np.mean]).columns
expected = Index(['sum', 'mean'])
tm.assert_index_equal(result, expected)
result = r.agg({'A': [np.sum, np.mean]}).columns
expected = pd.MultiIndex.from_tuples([('A', 'sum'), ('A', 'mean')])
tm.assert_index_equal(result, expected)
示例3: test_rolling_axis
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_axis(self, axis_frame):
# see gh-23372.
df = DataFrame(np.ones((10, 20)))
axis = df._get_axis_number(axis_frame)
if axis == 0:
expected = DataFrame({
i: [np.nan] * 2 + [3.0] * 8
for i in range(20)
})
else:
# axis == 1
expected = DataFrame([
[np.nan] * 2 + [3.0] * 18
] * 10)
result = df.rolling(3, axis=axis_frame).sum()
tm.assert_frame_equal(result, expected)
示例4: test_expanding_axis
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_expanding_axis(self, axis_frame):
# see gh-23372.
df = DataFrame(np.ones((10, 20)))
axis = df._get_axis_number(axis_frame)
if axis == 0:
expected = DataFrame({
i: [np.nan] * 2 + [float(j) for j in range(3, 11)]
for i in range(20)
})
else:
# axis == 1
expected = DataFrame([
[np.nan] * 2 + [float(i) for i in range(3, 21)]
] * 10)
result = df.expanding(3, axis=axis_frame).sum()
tm.assert_frame_equal(result, expected)
示例5: test_cmov_window_special_linear_range
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_cmov_window_special_linear_range(self, win_types_special):
# GH 8238
kwds = {
'kaiser': {'beta': 1.},
'gaussian': {'std': 1.},
'general_gaussian': {'power': 2., 'width': 2.},
'slepian': {'width': 0.5}}
vals = np.array(range(10), dtype=np.float)
xp = vals.copy()
xp[:2] = np.nan
xp[-2:] = np.nan
xp = Series(xp)
rs = Series(vals).rolling(
5, win_type=win_types_special, center=True).mean(
**kwds[win_types_special])
tm.assert_series_equal(xp, rs)
示例6: test_corr_sanity
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_corr_sanity(self):
# GH 3155
df = DataFrame(np.array(
[[0.87024726, 0.18505595], [0.64355431, 0.3091617],
[0.92372966, 0.50552513], [0.00203756, 0.04520709],
[0.84780328, 0.33394331], [0.78369152, 0.63919667]]))
res = df[0].rolling(5, center=True).corr(df[1])
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
# and some fuzzing
for _ in range(10):
df = DataFrame(np.random.rand(30, 2))
res = df[0].rolling(5, center=True).corr(df[1])
try:
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res)
except AssertionError:
print(res)
示例7: test_rolling_functions_window_non_shrinkage
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_functions_window_non_shrinkage(self, f):
# GH 7764
s = Series(range(4))
s_expected = Series(np.nan, index=s.index)
df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]], columns=['A', 'B'])
df_expected = DataFrame(np.nan, index=df.index, columns=df.columns)
try:
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df_result = f(df)
tm.assert_frame_equal(df_result, df_expected)
except (ImportError):
# scipy needed for rolling_window
pytest.skip("scipy not available")
示例8: test_rolling_functions_window_non_shrinkage_binary
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_functions_window_non_shrinkage_binary(self):
# corr/cov return a MI DataFrame
df = DataFrame([[1, 5], [3, 2], [3, 9], [-1, 0]],
columns=Index(['A', 'B'], name='foo'),
index=Index(range(4), name='bar'))
df_expected = DataFrame(
columns=Index(['A', 'B'], name='foo'),
index=pd.MultiIndex.from_product([df.index, df.columns],
names=['bar', 'foo']),
dtype='float64')
functions = [lambda x: (x.rolling(window=10, min_periods=5)
.cov(x, pairwise=True)),
lambda x: (x.rolling(window=10, min_periods=5)
.corr(x, pairwise=True))]
for f in functions:
df_result = f(df)
tm.assert_frame_equal(df_result, df_expected)
示例9: test_expanding_corr_pairwise_diff_length
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_expanding_corr_pairwise_diff_length(self):
# GH 7512
df1 = DataFrame([[1, 2], [3, 2], [3, 4]],
columns=['A', 'B'],
index=Index(range(3), name='bar'))
df1a = DataFrame([[1, 2], [3, 4]],
index=Index([0, 2], name='bar'),
columns=['A', 'B'])
df2 = DataFrame([[5, 6], [None, None], [2, 1]],
columns=['X', 'Y'],
index=Index(range(3), name='bar'))
df2a = DataFrame([[5, 6], [2, 1]],
index=Index([0, 2], name='bar'),
columns=['X', 'Y'])
result1 = df1.expanding().corr(df2, pairwise=True).loc[2]
result2 = df1.expanding().corr(df2a, pairwise=True).loc[2]
result3 = df1a.expanding().corr(df2, pairwise=True).loc[2]
result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2]
expected = DataFrame([[-1.0, -1.0], [-1.0, -1.0]],
columns=['A', 'B'],
index=Index(['X', 'Y']))
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected)
tm.assert_frame_equal(result4, expected)
示例10: test_rolling_max_gh6297
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_max_gh6297(self):
"""Replicate result expected in GH #6297"""
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 2 datapoints on one of the days
indices.append(datetime(1975, 1, 3, 6, 0))
series = Series(range(1, 7), index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
expected = Series([1.0, 2.0, 6.0, 4.0, 5.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
x = series.resample('D').max().rolling(window=1).max()
tm.assert_series_equal(expected, x)
示例11: test_rolling_min_resample
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_min_resample(self):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be min
expected = Series([0.0, 1.0, 2.0, 3.0, 4.0],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
r = series.resample('D').min().rolling(window=1)
tm.assert_series_equal(expected, r.min())
示例12: test_rolling_median_resample
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_rolling_median_resample(self):
indices = [datetime(1975, 1, i) for i in range(1, 6)]
# So that we can have 3 datapoints on last day (4, 10, and 20)
indices.append(datetime(1975, 1, 5, 1))
indices.append(datetime(1975, 1, 5, 2))
series = Series(list(range(0, 5)) + [10, 20], index=indices)
# Use floats instead of ints as values
series = series.map(lambda x: float(x))
# Sort chronologically
series = series.sort_index()
# Default how should be median
expected = Series([0.0, 1.0, 2.0, 3.0, 10],
index=[datetime(1975, 1, i, 0) for i in range(1, 6)])
x = series.resample('D').median().rolling(window=1).median()
tm.assert_series_equal(expected, x)
示例13: test_monotonic_on
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_monotonic_on(self):
# on/index must be monotonic
df = DataFrame({'A': pd.date_range('20130101',
periods=5,
freq='s'),
'B': range(5)})
assert df.A.is_monotonic
df.rolling('2s', on='A').sum()
df = df.set_index('A')
assert df.index.is_monotonic
df.rolling('2s').sum()
# non-monotonic
df.index = reversed(df.index.tolist())
assert not df.index.is_monotonic
with pytest.raises(ValueError):
df.rolling('2s').sum()
df = df.reset_index()
with pytest.raises(ValueError):
df.rolling('2s', on='A').sum()
示例14: test_construction_with_dtype
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_construction_with_dtype(self):
# specify dtype
ci = self.create_index(categories=list('abc'))
result = Index(np.array(ci), dtype='category')
tm.assert_index_equal(result, ci, exact=True)
result = Index(np.array(ci).tolist(), dtype='category')
tm.assert_index_equal(result, ci, exact=True)
# these are generally only equal when the categories are reordered
ci = self.create_index()
result = Index(
np.array(ci), dtype='category').reorder_categories(ci.categories)
tm.assert_index_equal(result, ci, exact=True)
# make sure indexes are handled
expected = CategoricalIndex([0, 1, 2], categories=[0, 1, 2],
ordered=True)
idx = Index(range(3))
result = CategoricalIndex(idx, categories=idx, ordered=True)
tm.assert_index_equal(result, expected, exact=True)
示例15: test_index_groupby
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import range [as 別名]
def test_index_groupby(self):
int_idx = Index(range(6))
float_idx = Index(np.arange(0, 0.6, 0.1))
obj_idx = Index('A B C D E F'.split())
dt_idx = pd.date_range('2013-01-01', freq='M', periods=6)
for idx in [int_idx, float_idx, obj_idx, dt_idx]:
to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1])
tm.assert_dict_equal(idx.groupby(to_groupby),
{1.0: idx[[0, 5]], 2.0: idx[[1, 4]]})
to_groupby = Index([datetime(2011, 11, 1),
datetime(2011, 12, 1),
pd.NaT,
pd.NaT,
datetime(2011, 12, 1),
datetime(2011, 11, 1)],
tz='UTC').values
ex_keys = [Timestamp('2011-11-01'), Timestamp('2011-12-01')]
expected = {ex_keys[0]: idx[[0, 5]],
ex_keys[1]: idx[[1, 4]]}
tm.assert_dict_equal(idx.groupby(to_groupby), expected)