本文整理匯總了Python中pandas.compat.product方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.product方法的具體用法?Python compat.product怎麽用?Python compat.product使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.product方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_pivot_table_dropna
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_pivot_table_dropna(self):
df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000},
'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'},
'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310},
'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'},
'quantity': {0: 2000000, 1: 500000,
2: 1000000, 3: 1000000}})
pv_col = df.pivot_table('quantity', 'month', [
'customer', 'product'], dropna=False)
pv_ind = df.pivot_table(
'quantity', ['customer', 'product'], 'month', dropna=False)
m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'),
('A', 'd'), ('B', 'a'), ('B', 'b'),
('B', 'c'), ('B', 'd'), ('C', 'a'),
('C', 'b'), ('C', 'c'), ('C', 'd')],
names=['customer', 'product'])
tm.assert_index_equal(pv_col.columns, m)
tm.assert_index_equal(pv_ind.index, m)
示例2: test_margins_dtype
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_margins_dtype(self):
# GH 17013
df = self.data.copy()
df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3)
mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
expected = DataFrame({'dull': [12, 21, 3, 9, 45],
'shiny': [33, 0, 36, 51, 120]},
index=mi).rename_axis('C', axis=1)
expected['All'] = expected['dull'] + expected['shiny']
result = df.pivot_table(values='D', index=['A', 'B'],
columns='C', margins=True,
aggfunc=np.sum, fill_value=0)
tm.assert_frame_equal(expected, result)
示例3: test_rank_tie_methods
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_rank_tie_methods(self):
s = self.s
def _check(s, expected, method='average'):
result = s.rank(method=method)
tm.assert_series_equal(result, Series(expected))
dtypes = [None, object]
disabled = {(object, 'first')}
results = self.results
for method, dtype in product(results, dtypes):
if (dtype, method) in disabled:
continue
series = s if dtype is None else s.astype(dtype)
_check(series, results[method], method=method)
示例4: test_rank_descending
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_rank_descending(self):
dtypes = ['O', 'f8', 'i8']
for dtype, method in product(dtypes, self.results):
if 'i' in dtype:
s = self.s.dropna()
else:
s = self.s.astype(dtype)
res = s.rank(ascending=False)
expected = (s.max() - s).rank()
assert_series_equal(res, expected)
if method == 'first' and dtype == 'O':
continue
expected = (s.max() - s).rank(method=method)
res2 = s.rank(method=method, ascending=False)
assert_series_equal(res2, expected)
示例5: test_resample_group_info
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_resample_group_info(self): # GH10914
for n, k in product((10000, 100000), (10, 100, 1000)):
dr = date_range(start='2015-08-27', periods=n // 10, freq='T')
ts = Series(np.random.randint(0, n // k, n).astype('int64'),
index=np.random.choice(dr, n))
left = ts.resample('30T').nunique()
ix = date_range(start=ts.index.min(), end=ts.index.max(),
freq='30T')
vals = ts.values
bins = np.searchsorted(ix.values, ts.index, side='right')
sorter = np.lexsort((vals, bins))
vals, bins = vals[sorter], bins[sorter]
mask = np.r_[True, vals[1:] != vals[:-1]]
mask |= np.r_[True, bins[1:] != bins[:-1]]
arr = np.bincount(bins[mask] - 1,
minlength=len(ix)).astype('int64', copy=False)
right = Series(arr, index=ix)
assert_series_equal(left, right)
示例6: test_rank_tie_methods
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_rank_tie_methods(self):
s = self.s
def _check(s, expected, method='average'):
result = s.rank(method=method)
tm.assert_series_equal(result, Series(expected))
dtypes = [None, object]
disabled = set([(object, 'first')])
results = self.results
for method, dtype in product(results, dtypes):
if (dtype, method) in disabled:
continue
series = s if dtype is None else s.astype(dtype)
_check(series, results[method], method=method)
示例7: test_rank_2d_tie_methods
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_rank_2d_tie_methods(self):
df = self.df
def _check2d(df, expected, method='average', axis=0):
exp_df = DataFrame({'A': expected, 'B': expected})
if axis == 1:
df = df.T
exp_df = exp_df.T
result = df.rank(method=method, axis=axis)
assert_frame_equal(result, exp_df)
dtypes = [None, object]
disabled = set([(object, 'first')])
results = self.results
for method, axis, dtype in product(results, [0, 1], dtypes):
if (dtype, method) in disabled:
continue
frame = df if dtype is None else df.astype(dtype)
_check2d(frame, results[method], method=method, axis=axis)
示例8: test_margins_dtype_len
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_margins_dtype_len(self):
mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
expected = DataFrame({'dull': [1, 1, 2, 1, 5],
'shiny': [2, 0, 2, 2, 6]},
index=mi).rename_axis('C', axis=1)
expected['All'] = expected['dull'] + expected['shiny']
result = self.data.pivot_table(values='D', index=['A', 'B'],
columns='C', margins=True,
aggfunc=len, fill_value=0)
tm.assert_frame_equal(expected, result)
示例9: test_pivot_integer_columns
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_pivot_integer_columns(self):
# caused by upstream bug in unstack
d = date.min
data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'],
[d + timedelta(i)
for i in range(20)], [1.0]))
df = DataFrame(data)
table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2])
df2 = df.rename(columns=str)
table2 = df2.pivot_table(
values='4', index=['0', '1', '3'], columns=['2'])
tm.assert_frame_equal(table, table2, check_names=False)
示例10: test_xs_integer_key
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_xs_integer_key():
# see gh-2107
dates = lrange(20111201, 20111205)
ids = 'abcde'
index = MultiIndex.from_tuples(
[x for x in cart_product(dates, ids)],
names=['date', 'secid'])
df = DataFrame(
np.random.randn(len(index), 3), index, ['X', 'Y', 'Z'])
result = df.xs(20111201, level='date')
expected = df.loc[20111201, :]
tm.assert_frame_equal(result, expected)
示例11: test_size
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_size(df):
grouped = df.groupby(['A', 'B'])
result = grouped.size()
for key, group in grouped:
assert result[key] == len(group)
grouped = df.groupby('A')
result = grouped.size()
for key, group in grouped:
assert result[key] == len(group)
grouped = df.groupby('B')
result = grouped.size()
for key, group in grouped:
assert result[key] == len(group)
df = DataFrame(np.random.choice(20, (1000, 3)), columns=list('abc'))
for sort, key in cart_product((False, True), ('a', 'b', ['a', 'b'])):
left = df.groupby(key, sort=sort).size()
right = df.groupby(key, sort=sort)['c'].apply(lambda a: a.shape[0])
tm.assert_series_equal(left, right, check_names=False)
# GH11699
df = DataFrame([], columns=['A', 'B'])
out = Series([], dtype='int64', index=Index([], name='A'))
tm.assert_series_equal(df.groupby('A').size(), out)
# pipe
# --------------------------------
示例12: test_ngroup_cumcount_pair
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import product [as 別名]
def test_ngroup_cumcount_pair(self):
# brute force comparison for all small series
for p in cart_product(range(3), repeat=4):
df = DataFrame({'a': p})
g = df.groupby(['a'])
order = sorted(set(p))
ngroupd = [order.index(val) for val in p]
cumcounted = [p[:i].count(val) for i, val in enumerate(p)]
assert_series_equal(g.ngroup(), Series(ngroupd))
assert_series_equal(g.cumcount(), Series(cumcounted))