本文整理匯總了Python中pandas.compat.map方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.map方法的具體用法?Python compat.map怎麽用?Python compat.map使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.map方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_to_excel_multiindex_cols
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def test_to_excel_multiindex_cols(self, merge_cells, engine, ext):
frame = self.frame
arrays = np.arange(len(frame.index) * 2).reshape(2, -1)
new_index = MultiIndex.from_arrays(arrays,
names=['first', 'second'])
frame.index = new_index
new_cols_index = MultiIndex.from_tuples([(40, 1), (40, 2),
(50, 1), (50, 2)])
frame.columns = new_cols_index
header = [0, 1]
if not merge_cells:
header = 0
# round trip
frame.to_excel(self.path, 'test1', merge_cells=merge_cells)
reader = ExcelFile(self.path)
df = read_excel(reader, 'test1', header=header,
index_col=[0, 1])
if not merge_cells:
fm = frame.columns.format(sparsify=False,
adjoin=False, names=False)
frame.columns = [".".join(map(str, q)) for q in zip(*fm)]
tm.assert_frame_equal(frame, df)
示例2: construction_error
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def construction_error(tot_items, block_shape, axes, e=None):
""" raise a helpful message about our construction """
passed = tuple(map(int, [tot_items] + list(block_shape)))
# Correcting the user facing error message during dataframe construction
if len(passed) <= 2:
passed = passed[::-1]
implied = tuple(len(ax) for ax in axes)
# Correcting the user facing error message during dataframe construction
if len(implied) <= 2:
implied = implied[::-1]
if passed == implied and e is not None:
raise e
if block_shape[0] == 0:
raise ValueError("Empty data passed with indices specified.")
raise ValueError("Shape of passed values is {0}, indices imply {1}".format(
passed, implied))
# -----------------------------------------------------------------------
示例3: _check_ne_builtin_clash
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def _check_ne_builtin_clash(expr):
"""Attempt to prevent foot-shooting in a helpful way.
Parameters
----------
terms : Term
Terms can contain
"""
names = expr.names
overlap = names & _ne_builtins
if overlap:
s = ', '.join(map(repr, overlap))
raise NumExprClobberingError('Variables in expression "{expr}" '
'overlap with builtins: ({s})'
.format(expr=expr, s=s))
示例4: __setitem__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def __setitem__(self, key, value):
key = com.apply_if_callable(key, self)
shape = tuple(self.shape)
if isinstance(value, self._constructor_sliced):
value = value.reindex(
**self._construct_axes_dict_for_slice(self._AXIS_ORDERS[1:]))
mat = value.values
elif isinstance(value, np.ndarray):
if value.shape != shape[1:]:
raise ValueError('shape of value must be {0}, shape of given '
'object was {1}'.format(
shape[1:], tuple(map(int, value.shape))))
mat = np.asarray(value)
elif is_scalar(value):
mat = cast_scalar_to_array(shape[1:], value)
else:
raise TypeError('Cannot set item of '
'type: {dtype!s}'.format(dtype=type(value)))
mat = mat.reshape(tuple([1]) + shape[1:])
NDFrame._set_item(self, key, mat)
示例5: count
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def count(self):
""" Compute count of group, excluding missing values """
from pandas.core.dtypes.missing import _isna_ndarraylike as _isna
data, _ = self._get_data_to_aggregate()
ids, _, ngroups = self.grouper.group_info
mask = ids != -1
val = ((mask & ~_isna(np.atleast_2d(blk.get_values())))
for blk in data.blocks)
loc = (blk.mgr_locs for blk in data.blocks)
counter = partial(
lib.count_level_2d, labels=ids, max_bin=ngroups, axis=1)
blk = map(make_block, map(counter, val), loc)
return self._wrap_agged_blocks(data.items, list(blk))
示例6: applymap
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def applymap(self, func):
"""
Apply a function to a DataFrame that is intended to operate
elementwise, i.e. like doing map(func, series) for each series in the
DataFrame
Parameters
----------
func : function
Python function, returns a single value from a single value
Returns
-------
applied : DataFrame
"""
return self.apply(lambda x: lmap(func, x))
示例7: adjoin
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def adjoin(space, *lists):
"""
Glues together two sets of strings using the amount of space requested.
The idea is to prettify.
"""
out_lines = []
newLists = []
lengths = [max(map(len, x)) + space for x in lists[:-1]]
# not the last one
lengths.append(max(map(len, lists[-1])))
maxLen = max(map(len, lists))
for i, lst in enumerate(lists):
nl = [x.ljust(lengths[i]) for x in lst]
nl.extend([' ' * lengths[i]] * (maxLen - len(lst)))
newLists.append(nl)
toJoin = zip(*newLists)
for lines in toJoin:
out_lines.append(_join_unicode(lines))
return _join_unicode(out_lines, sep='\n')
示例8: is_instance_factory
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def is_instance_factory(_type):
"""
Parameters
----------
`_type` - the type to be checked against
Returns
-------
validator - a function of a single argument x , which returns the
True if x is an instance of `_type`
"""
if isinstance(_type, (tuple, list)):
_type = tuple(_type)
from pandas.core.common import pprint_thing
type_repr = "|".join(map(pprint_thing, _type))
else:
type_repr = "'%s'" % _type
def inner(x):
if not isinstance(x, _type):
raise ValueError("Value must be an instance of %s" % type_repr)
return inner
示例9: _reset_ref_locs
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def _reset_ref_locs(self):
""" take the current _ref_locs and reset ref_locs on the blocks
to correctly map, ignoring Nones;
reset both _items_map and _ref_locs """
# let's reset the ref_locs in individual blocks
if self.items.is_unique:
for b in self.blocks:
b._ref_locs = None
else:
for b in self.blocks:
b.reset_ref_locs()
self._rebuild_ref_locs()
self._ref_locs = None
self._items_map = None
示例10: get_schema
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def get_schema(frame, name, flavor, keys=None):
"Return a CREATE TABLE statement to suit the contents of a DataFrame."
lookup_type = lambda dtype: get_sqltype(dtype.type, flavor)
# Replace spaces in DataFrame column names with _.
safe_columns = [s.replace(' ', '_').strip() for s in frame.dtypes.index]
column_types = lzip(safe_columns, map(lookup_type, frame.dtypes))
if flavor == 'sqlite':
columns = ',\n '.join('[%s] %s' % x for x in column_types)
else:
columns = ',\n '.join('`%s` %s' % x for x in column_types)
keystr = ''
if keys is not None:
if isinstance(keys, compat.string_types):
keys = (keys,)
keystr = ', PRIMARY KEY (%s)' % ','.join(keys)
template = """CREATE TABLE %(name)s (
%(columns)s
%(keystr)s
);"""
create_statement = template % {'name': name, 'columns': columns,
'keystr': keystr}
return create_statement
示例11: detect_colspecs
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def detect_colspecs(self, n=100):
# Regex escape the delimiters
delimiters = ''.join([r'\%s' % x for x in self.delimiter])
pattern = re.compile('([^%s]+)' % delimiters)
rows = self.get_rows(n)
max_len = max(map(len, rows))
mask = np.zeros(max_len + 1, dtype=int)
if self.comment is not None:
rows = [row.partition(self.comment)[0] for row in rows]
for row in rows:
for m in pattern.finditer(row):
mask[m.start():m.end()] = 1
shifted = np.roll(mask, 1)
shifted[0] = 0
edges = np.where((mask ^ shifted) == 1)[0]
return list(zip(edges[::2], edges[1::2]))
示例12: legend_title
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def legend_title(self):
if not isinstance(self.data.columns, ABCMultiIndex):
name = self.data.columns.name
if name is not None:
name = pprint_thing(name)
return name
else:
stringified = map(pprint_thing,
self.data.columns.names)
return ','.join(stringified)
示例13: test_string_factorize
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def test_string_factorize(self):
# should this be optional?
data = 'a\nb\na\nb\na'
reader = TextReader(StringIO(data), header=None)
result = reader.read()
assert len(set(map(id, result[0]))) == 2
示例14: _get_grouper_for_level
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def _get_grouper_for_level(self, mapper, level):
indexer = self.codes[level]
level_index = self.levels[level]
if mapper is not None:
# Handle group mapping function and return
level_values = self.levels[level].take(indexer)
grouper = level_values.map(mapper)
return grouper, None, None
codes, uniques = algos.factorize(indexer, sort=True)
if len(uniques) > 0 and uniques[0] == -1:
# Handle NAs
mask = indexer != -1
ok_codes, uniques = algos.factorize(indexer[mask], sort=True)
codes = np.empty(len(indexer), dtype=indexer.dtype)
codes[mask] = ok_codes
codes[~mask] = -1
if len(uniques) < len(level_index):
# Remove unobserved levels from level_index
level_index = level_index.take(uniques)
grouper = level_index.take(codes)
return grouper, codes, level_index
示例15: _get_multiindex_indexer
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import map [as 別名]
def _get_multiindex_indexer(join_keys, index, sort):
from functools import partial
# bind `sort` argument
fkeys = partial(_factorize_keys, sort=sort)
# left & right join labels and num. of levels at each location
rcodes, lcodes, shape = map(list, zip(* map(fkeys,
index.levels,
join_keys)))
if sort:
rcodes = list(map(np.take, rcodes, index.codes))
else:
i8copy = lambda a: a.astype('i8', subok=False, copy=True)
rcodes = list(map(i8copy, index.codes))
# fix right labels if there were any nulls
for i in range(len(join_keys)):
mask = index.codes[i] == -1
if mask.any():
# check if there already was any nulls at this location
# if there was, it is factorized to `shape[i] - 1`
a = join_keys[i][lcodes[i] == shape[i] - 1]
if a.size == 0 or not a[0] != a[0]:
shape[i] += 1
rcodes[i][mask] = shape[i] - 1
# get flat i8 join keys
lkey, rkey = _get_join_keys(lcodes, rcodes, shape, sort)
# factorize keys to a dense i8 space
lkey, rkey, count = fkeys(lkey, rkey)
return libjoin.left_outer_join(lkey, rkey, count, sort=sort)