本文整理匯總了Python中pandas.compat.lzip方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.lzip方法的具體用法?Python compat.lzip怎麽用?Python compat.lzip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.lzip方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _factorize_from_iterables
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def _factorize_from_iterables(iterables):
"""
A higher-level wrapper over `_factorize_from_iterable`.
*This is an internal function*
Parameters
----------
iterables : list-like of list-likes
Returns
-------
codes_list : list of ndarrays
categories_list : list of Indexes
Notes
-----
See `_factorize_from_iterable` for more info.
"""
if len(iterables) == 0:
# For consistency, it should return a list of 2 lists.
return [[], []]
return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
示例2: test_merge_on_multikey
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_merge_on_multikey(self):
joined = self.data.join(self.to_join, on=['key1', 'key2'])
join_key = Index(lzip(self.data['key1'], self.data['key2']))
indexer = self.to_join.index.get_indexer(join_key)
ex_values = self.to_join.values.take(indexer, axis=0)
ex_values[indexer == -1] = np.nan
expected = self.data.join(DataFrame(ex_values,
columns=self.to_join.columns))
# TODO: columns aren't in the same order yet
assert_frame_equal(joined, expected.loc[:, joined.columns])
left = self.data.join(self.to_join, on=['key1', 'key2'], sort=True)
right = expected.loc[:, joined.columns].sort_values(['key1', 'key2'],
kind='mergesort')
assert_frame_equal(left, right)
示例3: union
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def union(self, other):
"""
Form the union of two MultiIndex objects, sorting if possible
Parameters
----------
other : MultiIndex or array / Index of tuples
Returns
-------
Index
>>> index.union(index2)
"""
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
return self
uniq_tuples = lib.fast_unique_multiple([self._ndarray_values,
other._ndarray_values])
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
示例4: union
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def union(self, other):
"""
Form the union of two MultiIndex objects, sorting if possible
Parameters
----------
other : MultiIndex or array / Index of tuples
Returns
-------
Index
"""
self._assert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
return self
result_names = self.names if self.names == other.names else None
uniq_tuples = lib.fast_unique_multiple([self.values, other.values])
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
示例5: get_schema
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def get_schema(frame, name, flavor, keys=None):
"Return a CREATE TABLE statement to suit the contents of a DataFrame."
lookup_type = lambda dtype: get_sqltype(dtype.type, flavor)
# Replace spaces in DataFrame column names with _.
safe_columns = [s.replace(' ', '_').strip() for s in frame.dtypes.index]
column_types = lzip(safe_columns, map(lookup_type, frame.dtypes))
if flavor == 'sqlite':
columns = ',\n '.join('[%s] %s' % x for x in column_types)
else:
columns = ',\n '.join('`%s` %s' % x for x in column_types)
keystr = ''
if keys is not None:
if isinstance(keys, compat.string_types):
keys = (keys,)
keystr = ', PRIMARY KEY (%s)' % ','.join(keys)
template = """CREATE TABLE %(name)s (
%(columns)s
%(keystr)s
);"""
create_statement = template % {'name': name, 'columns': columns,
'keystr': keystr}
return create_statement
示例6: union
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def union(self, other):
"""
Form the union of two MultiIndex objects, sorting if possible
Parameters
----------
other : MultiIndex or array / Index of tuples
Returns
-------
Index
>>> index.union(index2)
"""
self._assert_can_do_setop(other)
other, result_names = self._convert_can_do_setop(other)
if len(other) == 0 or self.equals(other):
return self
uniq_tuples = lib.fast_unique_multiple([self._values, other._values])
return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0,
names=result_names)
示例7: get_kwargs_from_breaks
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def get_kwargs_from_breaks(self, breaks, closed='right'):
"""
converts intervals in breaks format to a dictionary of kwargs to
specific to the format expected by IntervalIndex.from_tuples
"""
if len(breaks) == 0:
return {'data': breaks}
tuples = lzip(breaks[:-1], breaks[1:])
if isinstance(breaks, (list, tuple)):
return {'data': tuples}
elif is_categorical_dtype(breaks):
return {'data': breaks._constructor(tuples)}
return {'data': com.asarray_tuplesafe(tuples)}
示例8: test_is_
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_is_():
mi = MultiIndex.from_tuples(lzip(range(10), range(10)))
assert mi.is_(mi)
assert mi.is_(mi.view())
assert mi.is_(mi.view().view().view().view())
mi2 = mi.view()
# names are metadata, they don't change id
mi2.names = ["A", "B"]
assert mi2.is_(mi)
assert mi.is_(mi2)
assert mi.is_(mi.set_names(["C", "D"]))
mi2 = mi.view()
mi2.set_names(["E", "F"], inplace=True)
assert mi.is_(mi2)
# levels are inherent properties, they change identity
mi3 = mi2.set_levels([lrange(10), lrange(10)])
assert not mi3.is_(mi2)
# shouldn't change
assert mi2.is_(mi)
mi4 = mi3.view()
# GH 17464 - Remove duplicate MultiIndex levels
mi4.set_levels([lrange(10), lrange(10)], inplace=True)
assert not mi4.is_(mi3)
mi5 = mi.view()
mi5.set_levels(mi5.levels, inplace=True)
assert not mi5.is_(mi)
示例9: test_boxplot_legacy2
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_boxplot_legacy2(self):
tuples = lzip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3),
index=MultiIndex.from_tuples(tuples))
grouped = df.groupby(level=1)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(grouped.boxplot, return_type='axes')
self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
axes = _check_plot_works(grouped.boxplot, subplots=False,
return_type='axes')
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
示例10: test_boxplot_legacy3
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_boxplot_legacy3(self):
tuples = lzip(string.ascii_letters[:10], range(10))
df = DataFrame(np.random.rand(10, 3),
index=MultiIndex.from_tuples(tuples))
grouped = df.unstack(level=1).groupby(level=0, axis=1)
with tm.assert_produces_warning(UserWarning):
axes = _check_plot_works(grouped.boxplot, return_type='axes')
self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
axes = _check_plot_works(grouped.boxplot, subplots=False,
return_type='axes')
self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
示例11: test_series_getitem_not_sorted
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_series_getitem_not_sorted(self):
arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = lzip(*arrays)
index = MultiIndex.from_tuples(tuples)
s = Series(randn(8), index=index)
arrays = [np.array(x) for x in zip(*index.values)]
result = s['qux']
result2 = s.loc['qux']
expected = s[arrays[0] == 'qux']
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
示例12: test_drop
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_drop(self):
simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]})
assert_frame_equal(simple.drop("A", axis=1), simple[['B']])
assert_frame_equal(simple.drop(["A", "B"], axis='columns'),
simple[[]])
assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.loc[[2], :])
assert_frame_equal(simple.drop(
[0, 3], axis='index'), simple.loc[[1, 2], :])
pytest.raises(KeyError, simple.drop, 5)
pytest.raises(KeyError, simple.drop, 'C', 1)
pytest.raises(KeyError, simple.drop, [1, 5])
pytest.raises(KeyError, simple.drop, ['A', 'C'], 1)
# errors = 'ignore'
assert_frame_equal(simple.drop(5, errors='ignore'), simple)
assert_frame_equal(simple.drop([0, 5], errors='ignore'),
simple.loc[[1, 2, 3], :])
assert_frame_equal(simple.drop('C', axis=1, errors='ignore'), simple)
assert_frame_equal(simple.drop(['A', 'C'], axis=1, errors='ignore'),
simple[['B']])
# non-unique - wheee!
nu_df = DataFrame(lzip(range(3), range(-3, 1), list('abc')),
columns=['a', 'a', 'b'])
assert_frame_equal(nu_df.drop('a', axis=1), nu_df[['b']])
assert_frame_equal(nu_df.drop('b', axis='columns'), nu_df['a'])
assert_frame_equal(nu_df.drop([]), nu_df) # GH 16398
nu_df = nu_df.set_index(pd.Index(['X', 'Y', 'X']))
nu_df.columns = list('abc')
assert_frame_equal(nu_df.drop('X', axis='rows'), nu_df.loc[["Y"], :])
assert_frame_equal(nu_df.drop(['X', 'Y'], axis=0), nu_df.loc[[], :])
# inplace cache issue
# GH 5628
df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
expected = df[~(df.b > 0)]
df.drop(labels=df[df.b > 0].index, inplace=True)
assert_frame_equal(df, expected)
示例13: test_setitem_list_of_tuples
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def test_setitem_list_of_tuples(self):
tuples = lzip(self.frame['A'], self.frame['B'])
self.frame['tuples'] = tuples
result = self.frame['tuples']
expected = Series(tuples, index=self.frame.index, name='tuples')
assert_series_equal(result, expected)
示例14: _sparsify
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def _sparsify(label_list, start=0, sentinel=''):
pivoted = lzip(*label_list)
k = len(label_list)
result = pivoted[:start + 1]
prev = pivoted[start]
for cur in pivoted[start + 1:]:
sparse_cur = []
for i, (p, t) in enumerate(zip(prev, cur)):
if i == k - 1:
sparse_cur.append(t)
result.append(sparse_cur)
break
if p == t:
sparse_cur.append(sentinel)
else:
sparse_cur.extend(cur[i:])
result.append(sparse_cur)
break
prev = cur
return lzip(*result)
示例15: groups
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lzip [as 別名]
def groups(self):
""" dict {group name -> group labels} """
if len(self.groupings) == 1:
return self.groupings[0].groups
else:
to_groupby = lzip(*(ping.grouper for ping in self.groupings))
to_groupby = Index(to_groupby)
return self.axis.groupby(to_groupby)