本文整理匯總了Python中pandas.compat.lrange方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.lrange方法的具體用法?Python compat.lrange怎麽用?Python compat.lrange使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.lrange方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def __call__(self):
'Return the locations of the ticks.'
# axis calls Locator.set_axis inside set_m<xxxx>_formatter
_check_implicitly_registered()
vi = tuple(self.axis.get_view_interval())
if vi != self.plot_obj.view_interval:
self.plot_obj.date_axis_info = None
self.plot_obj.view_interval = vi
vmin, vmax = vi
if vmax < vmin:
vmin, vmax = vmax, vmin
if self.isdynamic:
locs = self._get_default_locs(vmin, vmax)
else: # pragma: no cover
base = self.base
(d, m) = divmod(vmin, base)
vmin = (d + 1) * base
locs = lrange(vmin, vmax + 1, base)
return locs
示例2: test_take
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_take(self):
def assert_take_ok(mgr, axis, indexer):
mat = mgr.as_array()
taken = mgr.take(indexer, axis)
tm.assert_numpy_array_equal(np.take(mat, indexer, axis),
taken.as_array(), check_dtype=False)
tm.assert_index_equal(mgr.axes[axis].take(indexer),
taken.axes[axis])
for mgr in self.MANAGERS:
for ax in range(mgr.ndim):
# take/fancy indexer
assert_take_ok(mgr, ax, [])
assert_take_ok(mgr, ax, [0, 0, 0])
assert_take_ok(mgr, ax, lrange(mgr.shape[ax]))
if mgr.shape[ax] >= 3:
assert_take_ok(mgr, ax, [0, 1, 2])
assert_take_ok(mgr, ax, [-1, -2, -3])
示例3: test_droplevel_list
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_droplevel_list():
index = MultiIndex(
levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))],
codes=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array(
[0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])],
names=['one', 'two', 'three'])
dropped = index[:2].droplevel(['three', 'one'])
expected = index[:2].droplevel(2).droplevel(0)
assert dropped.equals(expected)
dropped = index[:2].droplevel([])
expected = index[:2]
assert dropped.equals(expected)
with pytest.raises(ValueError):
index[:2].droplevel(['one', 'two', 'three'])
with pytest.raises(KeyError):
index[:2].droplevel(['one', 'four'])
示例4: test_truncate
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_truncate():
major_axis = Index(lrange(4))
minor_axis = Index(lrange(2))
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index = MultiIndex(levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes])
result = index.truncate(before=1)
assert 'foo' not in result.levels[0]
assert 1 in result.levels[0]
result = index.truncate(after=1)
assert 2 not in result.levels[0]
assert 1 in result.levels[0]
result = index.truncate(before=1, after=2)
assert len(result.levels[0]) == 2
# after < before
pytest.raises(ValueError, index.truncate, 3, 1)
示例5: test_unsortedindex
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_unsortedindex():
# GH 11897
mi = pd.MultiIndex.from_tuples([('z', 'a'), ('x', 'a'), ('y', 'b'),
('x', 'b'), ('y', 'a'), ('z', 'b')],
names=['one', 'two'])
df = pd.DataFrame([[i, 10 * i] for i in lrange(6)], index=mi,
columns=['one', 'two'])
# GH 16734: not sorted, but no real slicing
result = df.loc(axis=0)['z', 'a']
expected = df.iloc[0]
tm.assert_series_equal(result, expected)
with pytest.raises(UnsortedIndexError):
df.loc(axis=0)['z', slice('a')]
df.sort_index(inplace=True)
assert len(df.loc(axis=0)['z', :]) == 2
with pytest.raises(KeyError):
df.loc(axis=0)['q', :]
示例6: test_consistency
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_consistency():
# need to construct an overflow
major_axis = lrange(70000)
minor_axis = lrange(10)
major_codes = np.arange(70000)
minor_codes = np.repeat(lrange(10), 7000)
# the fact that is works means it's consistent
index = MultiIndex(levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes])
# inconsistent
major_codes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1])
index = MultiIndex(levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes])
assert index.is_unique is False
示例7: test_bar_edge
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_bar_edge(self):
df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5))
self._check_bar_alignment(df, kind='bar', stacked=True, align='edge')
self._check_bar_alignment(df, kind='bar', stacked=True, width=0.9,
align='edge')
self._check_bar_alignment(df, kind='barh', stacked=True, align='edge')
self._check_bar_alignment(df, kind='barh', stacked=True, width=0.9,
align='edge')
self._check_bar_alignment(df, kind='bar', stacked=False, align='edge')
self._check_bar_alignment(df, kind='bar', stacked=False, width=0.9,
align='edge')
self._check_bar_alignment(df, kind='barh', stacked=False, align='edge')
self._check_bar_alignment(df, kind='barh', stacked=False, width=0.9,
align='edge')
self._check_bar_alignment(df, kind='bar', subplots=True, align='edge')
self._check_bar_alignment(df, kind='bar', subplots=True, width=0.9,
align='edge')
self._check_bar_alignment(df, kind='barh', subplots=True, align='edge')
self._check_bar_alignment(df, kind='barh', subplots=True, width=0.9,
align='edge')
示例8: test_frame_setitem_ix
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_frame_setitem_ix(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
frame.loc[('bar', 'two'), 'B'] = 5
assert frame.loc[('bar', 'two'), 'B'] == 5
# with integer labels
df = frame.copy()
df.columns = lrange(3)
df.loc[('bar', 'two'), 1] = 7
assert df.loc[('bar', 'two'), 1] == 7
with catch_warnings(record=True):
simplefilter("ignore", DeprecationWarning)
df = frame.copy()
df.columns = lrange(3)
df.ix[('bar', 'two'), 1] = 7
assert df.loc[('bar', 'two'), 1] == 7
示例9: test_astype_datetime
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_astype_datetime(self):
s = Series(iNaT, dtype='M8[ns]', index=lrange(5))
s = s.astype('O')
assert s.dtype == np.object_
s = Series([datetime(2001, 1, 2, 0, 0)])
s = s.astype('O')
assert s.dtype == np.object_
s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)])
s[1] = np.nan
assert s.dtype == 'M8[ns]'
s = s.astype('O')
assert s.dtype == np.object_
示例10: test_name_printing
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_name_printing(self):
# Test small Series.
s = Series([0, 1, 2])
s.name = "test"
assert "Name: test" in repr(s)
s.name = None
assert "Name:" not in repr(s)
# Test big Series (diff code path).
s = Series(lrange(0, 1000))
s.name = "test"
assert "Name: test" in repr(s)
s.name = None
assert "Name:" not in repr(s)
s = Series(index=date_range('20010101', '20020101'), name='test')
assert "Name: test" in repr(s)
示例11: test_series_append_aware_naive
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_series_append_aware_naive(self):
rng1 = date_range('1/1/2011 01:00', periods=1, freq='H')
rng2 = date_range('1/1/2011 02:00', periods=1, freq='H',
tz='US/Eastern')
ser1 = Series(np.random.randn(len(rng1)), index=rng1)
ser2 = Series(np.random.randn(len(rng2)), index=rng2)
ts_result = ser1.append(ser2)
expected = ser1.index.astype(object).append(ser2.index.astype(object))
assert ts_result.index.equals(expected)
# mixed
rng1 = date_range('1/1/2011 01:00', periods=1, freq='H')
rng2 = lrange(100)
ser1 = Series(np.random.randn(len(rng1)), index=rng1)
ser2 = Series(np.random.randn(len(rng2)), index=rng2)
ts_result = ser1.append(ser2)
expected = ser1.index.astype(object).append(ser2.index)
assert ts_result.index.equals(expected)
示例12: test_iloc
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_iloc():
s = Series(np.random.randn(10), index=lrange(0, 20, 2))
for i in range(len(s)):
result = s.iloc[i]
exp = s[s.index[i]]
assert_almost_equal(result, exp)
# pass a slice
result = s.iloc[slice(1, 3)]
expected = s.loc[2:4]
assert_series_equal(result, expected)
# test slice is a view
result[:] = 0
assert (s[1:3] == 0).all()
# list of integers
result = s.iloc[[0, 2, 3, 4, 5]]
expected = s.reindex(s.index[[0, 2, 3, 4, 5]])
assert_series_equal(result, expected)
示例13: test_getitem_setitem_slice_bug
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_getitem_setitem_slice_bug():
s = Series(lrange(10), lrange(10))
result = s[-12:]
assert_series_equal(result, s)
result = s[-7:]
assert_series_equal(result, s[3:])
result = s[:-12]
assert_series_equal(result, s[:0])
s = Series(lrange(10), lrange(10))
s[-12:] = 0
assert (s == 0).all()
s[:-12] = 5
assert (s == 0).all()
示例14: test_argsort
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_argsort(self, datetime_series):
self._check_accum_op('argsort', datetime_series, check_dtype=False)
argsorted = datetime_series.argsort()
assert issubclass(argsorted.dtype.type, np.integer)
# GH 2967 (introduced bug in 0.11-dev I think)
s = Series([Timestamp('201301%02d' % (i + 1)) for i in range(5)])
assert s.dtype == 'datetime64[ns]'
shifted = s.shift(-1)
assert shifted.dtype == 'datetime64[ns]'
assert isna(shifted[4])
result = s.argsort()
expected = Series(lrange(5), dtype='int64')
assert_series_equal(result, expected)
result = shifted.argsort()
expected = Series(lrange(4) + [-1], dtype='int64')
assert_series_equal(result, expected)
示例15: test_backfill
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import lrange [as 別名]
def test_backfill(self):
old = Index([1, 5, 10])
new = Index(lrange(12))
filler = libalgos.backfill["int64_t"](old.values, new.values)
expect_filler = np.array([0, 0, 1, 1, 1, 1,
2, 2, 2, 2, 2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)
# corner case
old = Index([1, 4])
new = Index(lrange(5, 10))
filler = libalgos.backfill["int64_t"](old.values, new.values)
expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64)
tm.assert_numpy_array_equal(filler, expect_filler)