本文整理匯總了Python中pandas.compat.itervalues方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.itervalues方法的具體用法?Python compat.itervalues怎麽用?Python compat.itervalues使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.itervalues方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def __call__(self, f):
@functools.wraps(f)
def _f(*args, **kwargs):
obj_iter = itertools.chain(args, compat.itervalues(kwargs))
if any(self.check(obj) for obj in obj_iter):
msg = 'reduction operation {name!r} not allowed for this dtype'
raise TypeError(msg.format(name=f.__name__.replace('nan', '')))
try:
with np.errstate(invalid='ignore'):
return f(*args, **kwargs)
except ValueError as e:
# we want to transform an object array
# ValueError message to the more typical TypeError
# e.g. this is normally a disallowed function on
# object arrays that contain strings
if is_object_dtype(args[0]):
raise TypeError(e)
raise
return _f
示例2: _get_series_result_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _get_series_result_type(result, objs=None):
"""
return appropriate class of Series concat
input is either dict or array-like
"""
from pandas import SparseSeries, SparseDataFrame, DataFrame
# concat Series with axis 1
if isinstance(result, dict):
# concat Series with axis 1
if all(isinstance(c, (SparseSeries, SparseDataFrame))
for c in compat.itervalues(result)):
return SparseDataFrame
else:
return DataFrame
# otherwise it is a SingleBlockManager (axis = 0)
if result._block.is_sparse:
return SparseSeries
else:
return objs[0]._constructor
示例3: _get_series_result_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _get_series_result_type(result, objs=None):
"""
return appropriate class of Series concat
input is either dict or array-like
"""
# concat Series with axis 1
if isinstance(result, dict):
# concat Series with axis 1
if all(is_sparse(c) for c in compat.itervalues(result)):
from pandas.core.sparse.api import SparseDataFrame
return SparseDataFrame
else:
from pandas.core.frame import DataFrame
return DataFrame
# otherwise it is a SingleBlockManager (axis = 0)
if result._block.is_sparse:
from pandas.core.sparse.api import SparseSeries
return SparseSeries
else:
return objs[0]._constructor
示例4: _construct_return_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _construct_return_type(self, result, axes=None):
"""
Return the type for the ndim of the result.
"""
ndim = getattr(result, 'ndim', None)
# need to assume they are the same
if ndim is None:
if isinstance(result, dict):
ndim = getattr(list(compat.itervalues(result))[0], 'ndim', 0)
# have a dict, so top-level is +1 dim
if ndim != 0:
ndim += 1
# scalar
if ndim == 0:
return Series(result)
# same as self
elif self.ndim == ndim:
# return the construction dictionary for these axes
if axes is None:
return self._constructor(result)
return self._constructor(result, **self._construct_axes_dict())
# sliced
elif self.ndim == ndim + 1:
if axes is None:
return self._constructor_sliced(result)
return self._constructor_sliced(
result, **self._extract_axes_for_slice(self, axes))
raise ValueError('invalid _construct_return_type [self->{self}] '
'[result->{result}]'.format(self=self, result=result))
示例5: test_utf
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def test_utf(self):
# GH10581
for encoding in self.utf_encodings:
for frame in compat.itervalues(self.frame):
result = self.encode_decode(frame, encoding=encoding)
assert_frame_equal(result, frame)
示例6: test_default_encoding
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def test_default_encoding(self):
for frame in compat.itervalues(self.frame):
result = frame.to_msgpack()
expected = frame.to_msgpack(encoding='utf8')
assert result == expected
result = self.encode_decode(frame)
assert_frame_equal(result, frame)
示例7: _construct_return_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _construct_return_type(self, result, axes=None):
""" return the type for the ndim of the result """
ndim = getattr(result, 'ndim', None)
# need to assume they are the same
if ndim is None:
if isinstance(result, dict):
ndim = getattr(list(compat.itervalues(result))[0], 'ndim', 0)
# have a dict, so top-level is +1 dim
if ndim != 0:
ndim += 1
# scalar
if ndim == 0:
return Series(result)
# same as self
elif self.ndim == ndim:
# return the construction dictionary for these axes
if axes is None:
return self._constructor(result)
return self._constructor(result, **self._construct_axes_dict())
# sliced
elif self.ndim == ndim + 1:
if axes is None:
return self._constructor_sliced(result)
return self._constructor_sliced(
result, **self._extract_axes_for_slice(self, axes))
raise ValueError('invalid _construct_return_type [self->{self}] '
'[result->{result}]'.format(self=self, result=result))
示例8: __set__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def __set__(self, obj, value):
value = _ensure_index(value)
if isinstance(value, MultiIndex):
raise NotImplementedError
for v in compat.itervalues(obj._frames):
setattr(v, self.frame_attr, value)
setattr(obj, self.cache_field, value)
示例9: _construct_return_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _construct_return_type(self, result, axes=None, **kwargs):
""" return the type for the ndim of the result """
ndim = getattr(result,'ndim',None)
# need to assume they are the same
if ndim is None:
if isinstance(result,dict):
ndim = getattr(list(compat.itervalues(result))[0],'ndim',None)
# a saclar result
if ndim is None:
ndim = 0
# have a dict, so top-level is +1 dim
else:
ndim += 1
# scalar
if ndim == 0:
return Series(result)
# same as self
elif self.ndim == ndim:
""" return the construction dictionary for these axes """
if axes is None:
return self._constructor(result)
return self._constructor(result, **self._construct_axes_dict())
# sliced
elif self.ndim == ndim + 1:
if axes is None:
return self._constructor_sliced(result)
return self._constructor_sliced(
result, **self._extract_axes_for_slice(self, axes))
raise PandasError('invalid _construct_return_type [self->%s] '
'[result->%s]' % (self, result))
示例10: __call__
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def __call__(self, f):
@functools.wraps(f)
def _f(*args, **kwargs):
obj_iter = itertools.chain(args, compat.itervalues(kwargs))
if any(self.check(obj) for obj in obj_iter):
raise TypeError('reduction operation {0!r} not allowed for '
'this dtype'.format(f.__name__.replace('nan',
'')))
return f(*args, **kwargs)
return _f
示例11: get_quote_yahoo
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def get_quote_yahoo(symbols):
"""
Get current yahoo quote
Returns a DataFrame
"""
if isinstance(symbols, compat.string_types):
sym_list = symbols
else:
sym_list = '+'.join(symbols)
# for codes see: http://www.gummy-stuff.org/Yahoo-data.htm
request = ''.join(compat.itervalues(_yahoo_codes)) # code request string
header = list(_yahoo_codes.keys())
data = defaultdict(list)
url_str = _YAHOO_QUOTE_URL + 's=%s&f=%s' % (sym_list, request)
with urlopen(url_str) as url:
lines = url.readlines()
for line in lines:
fields = line.decode('utf-8').strip().split(',')
for i, field in enumerate(fields):
if field[-2:] == '%"':
v = float(field.strip('"%'))
elif field[0] == '"':
v = field.strip('"')
else:
try:
v = float(field)
except ValueError:
v = np.nan
data[header[i]].append(v)
idx = data.pop('symbol')
return DataFrame(data, index=idx)
示例12: _construct_return_type
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _construct_return_type(self, result, axes=None):
""" return the type for the ndim of the result """
ndim = getattr(result, 'ndim', None)
# need to assume they are the same
if ndim is None:
if isinstance(result, dict):
ndim = getattr(list(compat.itervalues(result))[0], 'ndim', 0)
# have a dict, so top-level is +1 dim
if ndim != 0:
ndim += 1
# scalar
if ndim == 0:
return Series(result)
# same as self
elif self.ndim == ndim:
# return the construction dictionary for these axes
if axes is None:
return self._constructor(result)
return self._constructor(result, **self._construct_axes_dict())
# sliced
elif self.ndim == ndim + 1:
if axes is None:
return self._constructor_sliced(result)
return self._constructor_sliced(
result, **self._extract_axes_for_slice(self, axes))
raise ValueError('invalid _construct_return_type [self->%s] '
'[result->%s]' % (self, result))
示例13: _aggregate_multiple_funcs
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _aggregate_multiple_funcs(self, arg, _level):
if isinstance(arg, dict):
# show the deprecation, but only if we
# have not shown a higher level one
# GH 15931
if isinstance(self._selected_obj, Series) and _level <= 1:
warnings.warn(
("using a dict on a Series for aggregation\n"
"is deprecated and will be removed in a future "
"version"),
FutureWarning, stacklevel=3)
columns = list(arg.keys())
arg = list(arg.items())
elif any(isinstance(x, (tuple, list)) for x in arg):
arg = [(x, x) if not isinstance(x, (tuple, list)) else x
for x in arg]
# indicated column order
columns = lzip(*arg)[0]
else:
# list of functions / function names
columns = []
for f in arg:
if isinstance(f, compat.string_types):
columns.append(f)
else:
# protect against callables without names
columns.append(com.get_callable_name(f))
arg = lzip(columns, arg)
results = {}
for name, func in arg:
obj = self
if name in results:
raise SpecificationError(
'Function names must be unique, found multiple named '
'{}'.format(name))
# reset the cache so that we
# only include the named selection
if name in self._selected_obj:
obj = copy.copy(obj)
obj._reset_cache()
obj._selection = name
results[name] = obj.aggregate(func)
if any(isinstance(x, DataFrame) for x in compat.itervalues(results)):
# let higher level handle
if _level:
return results
return DataFrame(results, columns=columns)
示例14: _aggregate_multiple_funcs
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _aggregate_multiple_funcs(self, arg, _level):
if isinstance(arg, dict):
# show the deprecation, but only if we
# have not shown a higher level one
# GH 15931
if isinstance(self._selected_obj, Series) and _level <= 1:
warnings.warn(
("using a dict on a Series for aggregation\n"
"is deprecated and will be removed in a future "
"version"),
FutureWarning, stacklevel=3)
columns = list(arg.keys())
arg = list(arg.items())
elif any(isinstance(x, (tuple, list)) for x in arg):
arg = [(x, x) if not isinstance(x, (tuple, list)) else x
for x in arg]
# indicated column order
columns = lzip(*arg)[0]
else:
# list of functions / function names
columns = []
for f in arg:
if isinstance(f, compat.string_types):
columns.append(f)
else:
# protect against callables without names
columns.append(com._get_callable_name(f))
arg = lzip(columns, arg)
results = {}
for name, func in arg:
obj = self
if name in results:
raise SpecificationError('Function names must be unique, '
'found multiple named %s' % name)
# reset the cache so that we
# only include the named selection
if name in self._selected_obj:
obj = copy.copy(obj)
obj._reset_cache()
obj._selection = name
results[name] = obj.aggregate(func)
if isinstance(list(compat.itervalues(results))[0],
DataFrame):
# let higher level handle
if _level:
return results
return list(compat.itervalues(results))[0]
return DataFrame(results, columns=columns)
示例15: _aggregate_multiple_funcs
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import itervalues [as 別名]
def _aggregate_multiple_funcs(self, arg, _level):
if isinstance(arg, dict):
# show the deprecation, but only if we
# have not shown a higher level one
# GH 15931
if isinstance(self._selected_obj, Series) and _level <= 1:
warnings.warn(
("using a dict on a Series for aggregation\n"
"is deprecated and will be removed in a future "
"version"),
FutureWarning, stacklevel=3)
columns = list(arg.keys())
arg = list(arg.items())
elif any(isinstance(x, (tuple, list)) for x in arg):
arg = [(x, x) if not isinstance(x, (tuple, list)) else x
for x in arg]
# indicated column order
columns = lzip(*arg)[0]
else:
# list of functions / function names
columns = []
for f in arg:
if isinstance(f, compat.string_types):
columns.append(f)
else:
# protect against callables without names
columns.append(_get_callable_name(f))
arg = lzip(columns, arg)
results = {}
for name, func in arg:
obj = self
if name in results:
raise SpecificationError('Function names must be unique, '
'found multiple named %s' % name)
# reset the cache so that we
# only include the named selection
if name in self._selected_obj:
obj = copy.copy(obj)
obj._reset_cache()
obj._selection = name
results[name] = obj.aggregate(func)
if isinstance(list(compat.itervalues(results))[0],
DataFrame):
# let higher level handle
if _level:
return results
return list(compat.itervalues(results))[0]
return DataFrame(results, columns=columns)