本文整理匯總了Python中pandas.compat.iteritems方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.iteritems方法的具體用法?Python compat.iteritems怎麽用?Python compat.iteritems使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.iteritems方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _iter_data
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def _iter_data(self, data=None, keep_index=False, fillna=None):
if data is None:
data = self.data
if fillna is not None:
data = data.fillna(fillna)
# TODO: unused?
# if self.sort_columns:
# columns = com.try_sort(data.columns)
# else:
# columns = data.columns
for col, values in data.iteritems():
if keep_index is True:
yield col, values
else:
yield col, values.values
示例2: test_memory_usage
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_memory_usage(self):
for name, index in compat.iteritems(self.indices):
result = index.memory_usage()
if len(index):
index.get_loc(index[0])
result2 = index.memory_usage()
result3 = index.memory_usage(deep=True)
# RangeIndex, IntervalIndex
# don't have engines
if not isinstance(index, (RangeIndex, IntervalIndex)):
assert result2 > result
if index.inferred_type == 'object':
assert result3 > result2
else:
# we report 0 for no-length
assert result == 0
示例3: test_delete_base
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_delete_base(self):
for name, idx in compat.iteritems(self.indices):
if not len(idx):
continue
if isinstance(idx, RangeIndex):
# tested in class
continue
expected = idx[1:]
result = idx.delete(0)
assert result.equals(expected)
assert result.name == expected.name
expected = idx[:-1]
result = idx.delete(-1)
assert result.equals(expected)
assert result.name == expected.name
with pytest.raises((IndexError, ValueError)):
# either depending on numpy version
idx.delete(len(idx))
示例4: test_equals
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_equals(self):
for name, idx in compat.iteritems(self.indices):
assert idx.equals(idx)
assert idx.equals(idx.copy())
assert idx.equals(idx.astype(object))
assert not idx.equals(list(idx))
assert not idx.equals(np.array(idx))
# Cannot pass in non-int64 dtype to RangeIndex
if not isinstance(idx, RangeIndex):
same_values = Index(idx, dtype=object)
assert idx.equals(same_values)
assert same_values.equals(idx)
if idx.nlevels == 1:
# do not test MultiIndex
assert not idx.equals(pd.Series(idx))
示例5: test_apply_nanoseconds
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_apply_nanoseconds(self):
tests = []
tests.append((BusinessHour(),
{Timestamp('2014-07-04 15:00') + Nano(5): Timestamp(
'2014-07-04 16:00') + Nano(5),
Timestamp('2014-07-04 16:00') + Nano(5): Timestamp(
'2014-07-07 09:00') + Nano(5),
Timestamp('2014-07-04 16:00') - Nano(5): Timestamp(
'2014-07-04 17:00') - Nano(5)}))
tests.append((BusinessHour(-1),
{Timestamp('2014-07-04 15:00') + Nano(5): Timestamp(
'2014-07-04 14:00') + Nano(5),
Timestamp('2014-07-04 10:00') + Nano(5): Timestamp(
'2014-07-04 09:00') + Nano(5),
Timestamp('2014-07-04 10:00') - Nano(5): Timestamp(
'2014-07-03 17:00') - Nano(5), }))
for offset, cases in tests:
for base, expected in compat.iteritems(cases):
assert_offset_equal(offset, base, expected)
示例6: test_freq_code
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_freq_code(self):
assert get_freq('A') == 1000
assert get_freq('3A') == 1000
assert get_freq('-1A') == 1000
assert get_freq('Y') == 1000
assert get_freq('3Y') == 1000
assert get_freq('-1Y') == 1000
assert get_freq('W') == 4000
assert get_freq('W-MON') == 4001
assert get_freq('W-FRI') == 4005
for freqstr, code in compat.iteritems(_period_code_map):
result = get_freq(freqstr)
assert result == code
result = resolution.get_freq_group(freqstr)
assert result == code // 1000 * 1000
result = resolution.get_freq_group(code)
assert result == code // 1000 * 1000
示例7: test_infer_freq_tz
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_infer_freq_tz(self):
freqs = {'AS-JAN':
['2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01'],
'Q-OCT':
['2009-01-31', '2009-04-30', '2009-07-31', '2009-10-31'],
'M': ['2010-11-30', '2010-12-31', '2011-01-31', '2011-02-28'],
'W-SAT':
['2010-12-25', '2011-01-01', '2011-01-08', '2011-01-15'],
'D': ['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'],
'H': ['2011-12-31 22:00', '2011-12-31 23:00',
'2012-01-01 00:00', '2012-01-01 01:00']}
# GH 7310
for tz in [None, 'Australia/Sydney', 'Asia/Tokyo', 'Europe/Paris',
'US/Pacific', 'US/Eastern']:
for expected, dates in compat.iteritems(freqs):
idx = DatetimeIndex(dates, tz=tz)
assert idx.inferred_freq == expected
示例8: test_replace_input_formats_scalar
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_replace_input_formats_scalar(self):
df = DataFrame({'A': [np.nan, 0, np.inf], 'B': [0, 2, 5],
'C': ['', 'asdf', 'fd']})
# dict to scalar
to_rep = {'A': np.nan, 'B': 0, 'C': ''}
filled = df.replace(to_rep, 0)
expected = {k: v.replace(to_rep[k], 0)
for k, v in compat.iteritems(df)}
assert_frame_equal(filled, DataFrame(expected))
pytest.raises(TypeError, df.replace, to_rep, [np.nan, 0, ''])
# list to scalar
to_rep = [np.nan, 0, '']
result = df.replace(to_rep, -1)
expected = df.copy()
for i in range(len(to_rep)):
expected.replace(to_rep[i], -1, inplace=True)
assert_frame_equal(result, expected)
示例9: test_creating_and_reading_multiple_sheets
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_creating_and_reading_multiple_sheets(self, ext):
# see gh-9450
#
# Test reading multiple sheets, from a runtime
# created Excel file with multiple sheets.
def tdf(col_sheet_name):
d, i = [11, 22, 33], [1, 2, 3]
return DataFrame(d, i, columns=[col_sheet_name])
sheets = ["AAA", "BBB", "CCC"]
dfs = [tdf(s) for s in sheets]
dfs = dict(zip(sheets, dfs))
with ensure_clean(ext) as pth:
with ExcelWriter(pth) as ew:
for sheetname, df in iteritems(dfs):
df.to_excel(ew, sheetname)
dfs_returned = read_excel(pth, sheet_name=sheets, index_col=0)
for s in sheets:
tm.assert_frame_equal(dfs[s], dfs_returned[s])
示例10: _unpickle_sparse_frame_compat
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def _unpickle_sparse_frame_compat(self, state):
""" original pickle format """
series, cols, idx, fv, kind = state
if not isinstance(cols, Index): # pragma: no cover
from pandas.io.pickle import _unpickle_array
columns = _unpickle_array(cols)
else:
columns = cols
if not isinstance(idx, Index): # pragma: no cover
from pandas.io.pickle import _unpickle_array
index = _unpickle_array(idx)
else:
index = idx
series_dict = DataFrame()
for col, (sp_index, sp_values) in compat.iteritems(series):
series_dict[col] = SparseSeries(sp_values, sparse_index=sp_index,
fill_value=fv)
self._data = to_manager(series_dict, columns, index)
self._default_fill_value = fv
self._default_kind = kind
示例11: _combine_match_index
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def _combine_match_index(self, other, func, level=None):
new_data = {}
if level is not None:
raise NotImplementedError("'level' argument is not supported")
this, other = self.align(other, join='outer', axis=0, level=level,
copy=False)
for col, series in compat.iteritems(this):
new_data[col] = func(series.values, other.values)
fill_value = self._get_op_result_fill_value(other, func)
return self._constructor(
new_data, index=this.index, columns=self.columns,
default_fill_value=fill_value).__finalize__(self)
示例12: _reindex_columns
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def _reindex_columns(self, columns, method, copy, level, fill_value=None,
limit=None, takeable=False):
if level is not None:
raise TypeError('Reindex by level not supported for sparse')
if notna(fill_value):
raise NotImplementedError("'fill_value' argument is not supported")
if limit:
raise NotImplementedError("'limit' argument is not supported")
if method is not None:
raise NotImplementedError("'method' argument is not supported")
# TODO: fill value handling
sdict = {k: v for k, v in compat.iteritems(self) if k in columns}
return self._constructor(
sdict, index=self.index, columns=columns,
default_fill_value=self._default_fill_value).__finalize__(self)
示例13: _validate_color_args
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def _validate_color_args(self):
if 'color' in self.kwds:
if self.colormap is not None:
warnings.warn("'color' and 'colormap' cannot be used "
"simultaneously. Using 'color'")
self.color = self.kwds.pop('color')
if isinstance(self.color, dict):
valid_keys = ['boxes', 'whiskers', 'medians', 'caps']
for key, values in compat.iteritems(self.color):
if key not in valid_keys:
raise ValueError("color dict contains invalid "
"key '{0}' "
"The key must be either {1}"
.format(key, valid_keys))
else:
self.color = None
# get standard colors for default
colors = _get_standard_colors(num_colors=3,
colormap=self.colormap,
color=None)
# use 2 colors by default, for box/whisker and median
# flier colors isn't needed here
# because it can be specified by ``sym`` kw
self._boxes_c = colors[0]
self._whiskers_c = colors[0]
self._medians_c = colors[2]
self._caps_c = 'k' # mpl default
示例14: test_delete
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_delete(self):
idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx')
# prserve freq
expected_0 = timedelta_range(start='2 Days', periods=4, freq='D',
name='idx')
expected_4 = timedelta_range(start='1 Days', periods=4, freq='D',
name='idx')
# reset freq to None
expected_1 = TimedeltaIndex(
['1 day', '3 day', '4 day', '5 day'], freq=None, name='idx')
cases = {0: expected_0,
-5: expected_0,
-1: expected_4,
4: expected_4,
1: expected_1}
for n, expected in compat.iteritems(cases):
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
with pytest.raises((IndexError, ValueError)):
# either depending on numpy version
idx.delete(5)
示例15: test_delete_slice
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import iteritems [as 別名]
def test_delete_slice(self):
idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx')
# prserve freq
expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D',
name='idx')
expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D',
name='idx')
# reset freq to None
expected_3_5 = TimedeltaIndex(['1 d', '2 d', '3 d',
'7 d', '8 d', '9 d', '10d'],
freq=None, name='idx')
cases = {(0, 1, 2): expected_0_2,
(7, 8, 9): expected_7_9,
(3, 4, 5): expected_3_5}
for n, expected in compat.iteritems(cases):
result = idx.delete(n)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq
result = idx.delete(slice(n[0], n[-1] + 1))
tm.assert_index_equal(result, expected)
assert result.name == expected.name
assert result.freq == expected.freq