本文整理匯總了Python中pandas.compat.is_platform_windows方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.is_platform_windows方法的具體用法?Python compat.is_platform_windows怎麽用?Python compat.is_platform_windows使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.is_platform_windows方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_read_csv_local
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_read_csv_local(all_parsers, csv1):
prefix = u("file:///") if compat.is_platform_windows() else u("file://")
parser = all_parsers
fname = prefix + compat.text_type(os.path.abspath(csv1))
result = parser.read_csv(fname, index_col=0, parse_dates=True)
expected = DataFrame([[0.980269, 3.685731, -0.364216805298, -1.159738],
[1.047916, -0.041232, -0.16181208307, 0.212549],
[0.498581, 0.731168, -0.537677223318, 1.346270],
[1.120202, 1.567621, 0.00364077397681, 0.675253],
[-0.487094, 0.571455, -1.6116394093, 0.103469],
[0.836649, 0.246462, 0.588542635376, 1.062782],
[-0.157161, 1.340307, 1.1957779562, -1.097007]],
columns=["A", "B", "C", "D"],
index=Index([datetime(2000, 1, 3),
datetime(2000, 1, 4),
datetime(2000, 1, 5),
datetime(2000, 1, 6),
datetime(2000, 1, 7),
datetime(2000, 1, 10),
datetime(2000, 1, 11)], name="index"))
tm.assert_frame_equal(result, expected)
示例2: test_constructor_bad_file
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_constructor_bad_file(self, mmap_file):
non_file = StringIO('I am not a file')
non_file.fileno = lambda: -1
# the error raised is different on Windows
if is_platform_windows():
msg = "The parameter is incorrect"
err = OSError
else:
msg = "[Errno 22]"
err = mmap.error
with pytest.raises(err, match=msg):
icom.MMapWrapper(non_file)
target = open(mmap_file, 'r')
target.close()
msg = "I/O operation on closed file"
with pytest.raises(ValueError, match=msg):
icom.MMapWrapper(target)
示例3: test_constructor_bad_file
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_constructor_bad_file(self, mmap_file):
non_file = StringIO('I am not a file')
non_file.fileno = lambda: -1
# the error raised is different on Windows
if is_platform_windows():
msg = "The parameter is incorrect"
err = OSError
else:
msg = "[Errno 22]"
err = mmap.error
tm.assert_raises_regex(err, msg, common.MMapWrapper, non_file)
target = open(mmap_file, 'r')
target.close()
msg = "I/O operation on closed file"
tm.assert_raises_regex(
ValueError, msg, common.MMapWrapper, target)
示例4: test_intersect
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_intersect(self):
def _check_correct(a, b, expected):
result = a.intersect(b)
assert (result.equals(expected))
def _check_length_exc(a, longer):
pytest.raises(Exception, a.intersect, longer)
def _check_case(xloc, xlen, yloc, ylen, eloc, elen):
xindex = BlockIndex(TEST_LENGTH, xloc, xlen)
yindex = BlockIndex(TEST_LENGTH, yloc, ylen)
expected = BlockIndex(TEST_LENGTH, eloc, elen)
longer_index = BlockIndex(TEST_LENGTH + 1, yloc, ylen)
_check_correct(xindex, yindex, expected)
_check_correct(xindex.to_int_index(), yindex.to_int_index(),
expected.to_int_index())
_check_length_exc(xindex, longer_index)
_check_length_exc(xindex.to_int_index(),
longer_index.to_int_index())
if compat.is_platform_windows():
pytest.skip("segfaults on win-64 when all tests are run")
check_cases(_check_case)
示例5: test_numpy_array_equal_object_message
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_numpy_array_equal_object_message(self):
if is_platform_windows():
pytest.skip("windows has incomparable line-endings "
"and uses L on the shape")
a = np.array([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-01')])
b = np.array([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')])
expected = """numpy array are different
numpy array values are different \\(50\\.0 %\\)
\\[left\\]: \\[2011-01-01 00:00:00, 2011-01-01 00:00:00\\]
\\[right\\]: \\[2011-01-01 00:00:00, 2011-01-02 00:00:00\\]"""
with tm.assert_raises_regex(AssertionError, expected):
assert_numpy_array_equal(a, b)
with tm.assert_raises_regex(AssertionError, expected):
assert_almost_equal(a, b)
示例6: test_pass_dtype_as_recarray
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_pass_dtype_as_recarray(self):
if compat.is_platform_windows() and self.low_memory:
pytest.skip(
"segfaults on win-64, only when all tests are run")
data = """\
one,two
1,2.5
2,3.5
3,4.5
4,5.5"""
with tm.assert_produces_warning(
FutureWarning, check_stacklevel=False):
result = self.read_csv(StringIO(data), dtype={
'one': 'u1', 1: 'S1'}, as_recarray=True)
assert result['one'].dtype == 'u1'
assert result['two'].dtype == 'S1'
示例7: test_constructor_bad_file
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_constructor_bad_file(self):
non_file = StringIO('I am not a file')
non_file.fileno = lambda: -1
# the error raised is different on Windows
if is_platform_windows():
msg = "The parameter is incorrect"
err = OSError
else:
msg = "[Errno 22]"
err = mmap.error
tm.assert_raises_regex(err, msg, common.MMapWrapper, non_file)
target = open(self.mmap_file, 'r')
target.close()
msg = "I/O operation on closed file"
tm.assert_raises_regex(
ValueError, msg, common.MMapWrapper, target)
示例8: test_invalid_index_types
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_invalid_index_types(self):
# test all index types
for i in [tm.makeIntIndex(10), tm.makeFloatIndex(10),
tm.makePeriodIndex(10)]:
pytest.raises(TypeError, lambda: frequencies.infer_freq(i))
# GH 10822
# odd error message on conversions to datetime for unicode
if not is_platform_windows():
for i in [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)]:
pytest.raises(ValueError, lambda: frequencies.infer_freq(i))
示例9: test_convert_rows_list_to_csv_str
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_convert_rows_list_to_csv_str():
rows_list = ["aaa", "bbb", "ccc"]
ret = tm.convert_rows_list_to_csv_str(rows_list)
if compat.is_platform_windows():
expected = "aaa\r\nbbb\r\nccc\r\n"
else:
expected = "aaa\nbbb\nccc\n"
assert ret == expected
示例10: test_itertuples
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_itertuples(self):
for i, tup in enumerate(self.frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = self.frame.iloc[i, :].reset_index(drop=True)
self._assert_series_equal(s, expected)
df = self.klass({'floats': np.random.randn(5),
'ints': lrange(5)}, columns=['floats', 'ints'])
for tup in df.itertuples(index=False):
assert isinstance(tup[1], (int, long))
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[['a', 'a']]
assert (list(dfaa.itertuples()) ==
[(0, 1, 1), (1, 2, 2), (2, 3, 3)])
# repr with be int/long on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (repr(list(df.itertuples(name=None))) ==
'[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
tup = next(df.itertuples(name='TestName'))
assert tup._fields == ('Index', 'a', 'b')
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == 'TestName'
df.columns = ['def', 'return']
tup2 = next(df.itertuples(name='TestName'))
assert tup2 == (0, 1, 4)
assert tup2._fields == ('Index', '_1', '_2')
df3 = DataFrame({'f' + str(i): [i] for i in range(1024)})
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert not hasattr(tup3, '_fields')
assert isinstance(tup3, tuple)
示例11: test_read_csv
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_read_csv(self):
if not compat.PY3:
if compat.is_platform_windows():
prefix = u("file:///")
else:
prefix = u("file://")
fname = prefix + compat.text_type(os.path.abspath(self.csv1))
self.read_csv(fname, index_col=0, parse_dates=True)
示例12: _assert_replace_conversion
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def _assert_replace_conversion(self, from_key, to_key, how):
index = pd.Index([3, 4], name='xxx')
obj = pd.Series(self.rep[from_key], index=index, name='yyy')
assert obj.dtype == from_key
if (from_key.startswith('datetime') and to_key.startswith('datetime')):
# different tz, currently mask_missing raises SystemError
return
if how == 'dict':
replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
elif how == 'series':
replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
else:
raise ValueError
result = obj.replace(replacer)
if ((from_key == 'float64' and to_key in ('int64')) or
(from_key == 'complex128' and
to_key in ('int64', 'float64'))):
# buggy on 32-bit / window
if compat.is_platform_32bit() or compat.is_platform_windows():
pytest.skip("32-bit platform buggy: {0} -> {1}".format
(from_key, to_key))
# Expected: do not downcast by replacement
exp = pd.Series(self.rep[to_key], index=index,
name='yyy', dtype=from_key)
else:
exp = pd.Series(self.rep[to_key], index=index, name='yyy')
assert exp.dtype == to_key
tm.assert_series_equal(result, exp)
示例13: test_replace_series
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_replace_series(self, how, to_key, from_key):
if from_key == 'bool' and how == 'series' and compat.PY3:
# doesn't work in PY3, though ...dict_from_bool works fine
pytest.skip("doesn't work as in PY3")
index = pd.Index([3, 4], name='xxx')
obj = pd.Series(self.rep[from_key], index=index, name='yyy')
assert obj.dtype == from_key
if (from_key.startswith('datetime') and to_key.startswith('datetime')):
# tested below
return
elif from_key in ['datetime64[ns, US/Eastern]', 'datetime64[ns, UTC]']:
# tested below
return
if how == 'dict':
replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
elif how == 'series':
replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
else:
raise ValueError
result = obj.replace(replacer)
if ((from_key == 'float64' and to_key in ('int64')) or
(from_key == 'complex128' and
to_key in ('int64', 'float64'))):
if compat.is_platform_32bit() or compat.is_platform_windows():
pytest.skip("32-bit platform buggy: {0} -> {1}".format
(from_key, to_key))
# Expected: do not downcast by replacement
exp = pd.Series(self.rep[to_key], index=index,
name='yyy', dtype=from_key)
else:
exp = pd.Series(self.rep[to_key], index=index, name='yyy')
assert exp.dtype == to_key
tm.assert_series_equal(result, exp)
# TODO(jbrockmendel) commented out to only have a single xfail printed
示例14: test_itertuples
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_windows [as 別名]
def test_itertuples(self):
for i, tup in enumerate(self.frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = self.frame.iloc[i, :].reset_index(drop=True)
self._assert_series_equal(s, expected)
df = self.klass({'floats': np.random.randn(5),
'ints': lrange(5)}, columns=['floats', 'ints'])
for tup in df.itertuples(index=False):
assert isinstance(tup[1], (int, long))
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[['a', 'a']]
assert (list(dfaa.itertuples()) ==
[(0, 1, 1), (1, 2, 2), (2, 3, 3)])
# repr with be int/long on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (repr(list(df.itertuples(name=None))) ==
'[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
tup = next(df.itertuples(name='TestName'))
if sys.version >= LooseVersion('2.7'):
assert tup._fields == ('Index', 'a', 'b')
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == 'TestName'
df.columns = ['def', 'return']
tup2 = next(df.itertuples(name='TestName'))
assert tup2 == (0, 1, 4)
if sys.version >= LooseVersion('2.7'):
assert tup2._fields == ('Index', '_1', '_2')
df3 = DataFrame(dict(('f' + str(i), [i]) for i in range(1024)))
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert not hasattr(tup3, '_fields')
assert isinstance(tup3, tuple)