本文整理匯總了Python中pandas.compat.is_platform_32bit方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.is_platform_32bit方法的具體用法?Python compat.is_platform_32bit怎麽用?Python compat.is_platform_32bit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.is_platform_32bit方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: skipif_32bit
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def skipif_32bit(param):
"""
Skip parameters in a parametrize on 32bit systems. Specifically used
here to skip leaf_size parameters related to GH 23440.
"""
marks = pytest.mark.skipif(compat.is_platform_32bit(),
reason='GH 23440: int type mismatch on 32bit')
return pytest.param(param, marks=marks)
示例2: test_int_max
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_int_max(self, any_int_dtype):
if any_int_dtype in ("int64", "uint64") and compat.is_platform_32bit():
pytest.skip("Cannot test 64-bit integer on 32-bit platform")
klass = np.dtype(any_int_dtype).type
# uint64 max will always overflow,
# as it's encoded to signed.
if any_int_dtype == "uint64":
num = np.iinfo("int64").max
else:
num = np.iinfo(any_int_dtype).max
assert klass(ujson.decode(ujson.encode(num))) == num
示例3: test_dropna
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_dropna(self):
# https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=True),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=False),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=True),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=False),
Series([2, 1, 1], index=[True, False, np.nan]))
tm.assert_series_equal(
Series([10.3, 5., 5.]).value_counts(dropna=True),
Series([2, 1], index=[5., 10.3]))
tm.assert_series_equal(
Series([10.3, 5., 5.]).value_counts(dropna=False),
Series([2, 1], index=[5., 10.3]))
tm.assert_series_equal(
Series([10.3, 5., 5., None]).value_counts(dropna=True),
Series([2, 1], index=[5., 10.3]))
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
result = Series([10.3, 5., 5., None]).value_counts(dropna=False)
expected = Series([2, 1, 1], index=[5., 10.3, np.nan])
tm.assert_series_equal(result, expected)
示例4: test_value_counts_uint64
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_value_counts_uint64(self):
arr = np.array([2**63], dtype=np.uint64)
expected = Series([1], index=[2**63])
result = algos.value_counts(arr)
tm.assert_series_equal(result, expected)
arr = np.array([-1, 2**63], dtype=object)
expected = Series([1, 1], index=[-1, 2**63])
result = algos.value_counts(arr)
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
tm.assert_series_equal(result, expected)
示例5: test_itertuples
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_itertuples(self):
for i, tup in enumerate(self.frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = self.frame.iloc[i, :].reset_index(drop=True)
self._assert_series_equal(s, expected)
df = self.klass({'floats': np.random.randn(5),
'ints': lrange(5)}, columns=['floats', 'ints'])
for tup in df.itertuples(index=False):
assert isinstance(tup[1], (int, long))
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[['a', 'a']]
assert (list(dfaa.itertuples()) ==
[(0, 1, 1), (1, 2, 2), (2, 3, 3)])
# repr with be int/long on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (repr(list(df.itertuples(name=None))) ==
'[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
tup = next(df.itertuples(name='TestName'))
assert tup._fields == ('Index', 'a', 'b')
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == 'TestName'
df.columns = ['def', 'return']
tup2 = next(df.itertuples(name='TestName'))
assert tup2 == (0, 1, 4)
assert tup2._fields == ('Index', '_1', '_2')
df3 = DataFrame({'f' + str(i): [i] for i in range(1024)})
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert not hasattr(tup3, '_fields')
assert isinstance(tup3, tuple)
示例6: test_IntMax
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_IntMax(self):
num = np.int(np.iinfo(np.int).max)
assert np.int(ujson.decode(ujson.encode(num))) == num
num = np.int8(np.iinfo(np.int8).max)
assert np.int8(ujson.decode(ujson.encode(num))) == num
num = np.int16(np.iinfo(np.int16).max)
assert np.int16(ujson.decode(ujson.encode(num))) == num
num = np.int32(np.iinfo(np.int32).max)
assert np.int32(ujson.decode(ujson.encode(num))) == num
num = np.uint8(np.iinfo(np.uint8).max)
assert np.uint8(ujson.decode(ujson.encode(num))) == num
num = np.uint16(np.iinfo(np.uint16).max)
assert np.uint16(ujson.decode(ujson.encode(num))) == num
num = np.uint32(np.iinfo(np.uint32).max)
assert np.uint32(ujson.decode(ujson.encode(num))) == num
if not compat.is_platform_32bit():
num = np.int64(np.iinfo(np.int64).max)
assert np.int64(ujson.decode(ujson.encode(num))) == num
# uint64 max will always overflow as it's encoded to signed
num = np.uint64(np.iinfo(np.int64).max)
assert np.uint64(ujson.decode(ujson.encode(num))) == num
示例7: _assert_replace_conversion
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def _assert_replace_conversion(self, from_key, to_key, how):
index = pd.Index([3, 4], name='xxx')
obj = pd.Series(self.rep[from_key], index=index, name='yyy')
assert obj.dtype == from_key
if (from_key.startswith('datetime') and to_key.startswith('datetime')):
# different tz, currently mask_missing raises SystemError
return
if how == 'dict':
replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
elif how == 'series':
replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
else:
raise ValueError
result = obj.replace(replacer)
if ((from_key == 'float64' and to_key in ('int64')) or
(from_key == 'complex128' and
to_key in ('int64', 'float64'))):
# buggy on 32-bit / window
if compat.is_platform_32bit() or compat.is_platform_windows():
pytest.skip("32-bit platform buggy: {0} -> {1}".format
(from_key, to_key))
# Expected: do not downcast by replacement
exp = pd.Series(self.rep[to_key], index=index,
name='yyy', dtype=from_key)
else:
exp = pd.Series(self.rep[to_key], index=index, name='yyy')
assert exp.dtype == to_key
tm.assert_series_equal(result, exp)
示例8: test_replace_series
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_replace_series(self, how, to_key, from_key):
if from_key == 'bool' and how == 'series' and compat.PY3:
# doesn't work in PY3, though ...dict_from_bool works fine
pytest.skip("doesn't work as in PY3")
index = pd.Index([3, 4], name='xxx')
obj = pd.Series(self.rep[from_key], index=index, name='yyy')
assert obj.dtype == from_key
if (from_key.startswith('datetime') and to_key.startswith('datetime')):
# tested below
return
elif from_key in ['datetime64[ns, US/Eastern]', 'datetime64[ns, UTC]']:
# tested below
return
if how == 'dict':
replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
elif how == 'series':
replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
else:
raise ValueError
result = obj.replace(replacer)
if ((from_key == 'float64' and to_key in ('int64')) or
(from_key == 'complex128' and
to_key in ('int64', 'float64'))):
if compat.is_platform_32bit() or compat.is_platform_windows():
pytest.skip("32-bit platform buggy: {0} -> {1}".format
(from_key, to_key))
# Expected: do not downcast by replacement
exp = pd.Series(self.rep[to_key], index=index,
name='yyy', dtype=from_key)
else:
exp = pd.Series(self.rep[to_key], index=index, name='yyy')
assert exp.dtype == to_key
tm.assert_series_equal(result, exp)
# TODO(jbrockmendel) commented out to only have a single xfail printed
示例9: test_itertuples
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import is_platform_32bit [as 別名]
def test_itertuples(self):
for i, tup in enumerate(self.frame.itertuples()):
s = self.klass._constructor_sliced(tup[1:])
s.name = tup[0]
expected = self.frame.iloc[i, :].reset_index(drop=True)
self._assert_series_equal(s, expected)
df = self.klass({'floats': np.random.randn(5),
'ints': lrange(5)}, columns=['floats', 'ints'])
for tup in df.itertuples(index=False):
assert isinstance(tup[1], (int, long))
df = self.klass(data={"a": [1, 2, 3], "b": [4, 5, 6]})
dfaa = df[['a', 'a']]
assert (list(dfaa.itertuples()) ==
[(0, 1, 1), (1, 2, 2), (2, 3, 3)])
# repr with be int/long on 32-bit/windows
if not (compat.is_platform_windows() or compat.is_platform_32bit()):
assert (repr(list(df.itertuples(name=None))) ==
'[(0, 1, 4), (1, 2, 5), (2, 3, 6)]')
tup = next(df.itertuples(name='TestName'))
if sys.version >= LooseVersion('2.7'):
assert tup._fields == ('Index', 'a', 'b')
assert (tup.Index, tup.a, tup.b) == tup
assert type(tup).__name__ == 'TestName'
df.columns = ['def', 'return']
tup2 = next(df.itertuples(name='TestName'))
assert tup2 == (0, 1, 4)
if sys.version >= LooseVersion('2.7'):
assert tup2._fields == ('Index', '_1', '_2')
df3 = DataFrame(dict(('f' + str(i), [i]) for i in range(1024)))
# will raise SyntaxError if trying to create namedtuple
tup3 = next(df3.itertuples())
assert not hasattr(tup3, '_fields')
assert isinstance(tup3, tuple)