本文整理匯總了Python中pandas.compat.callable方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.callable方法的具體用法?Python compat.callable怎麽用?Python compat.callable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.callable方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def apply(self, func, *args, **kwargs):
func = self._is_builtin_func(func)
# this is needed so we don't try and wrap strings. If we could
# resolve functions to their callable functions prior, this
# wouldn't be needed
if args or kwargs:
if callable(func):
@wraps(func)
def f(g):
with np.errstate(all='ignore'):
return func(g, *args, **kwargs)
else:
raise ValueError('func must be a callable if args or '
'kwargs are supplied')
else:
f = func
# ignore SettingWithCopy here in case the user mutates
with option_context('mode.chained_assignment', None):
try:
result = self._python_apply_general(f)
except Exception:
# gh-20949
# try again, with .apply acting as a filtering
# operation, by excluding the grouping column
# This would normally not be triggered
# except if the udf is trying an operation that
# fails on *some* columns, e.g. a numeric operation
# on a string grouper column
with _group_selection_context(self):
return self._python_apply_general(f)
return result
示例2: _groupby_and_aggregate
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs):
"""
Re-evaluate the obj with a groupby aggregation.
"""
if grouper is None:
self._set_binner()
grouper = self.grouper
obj = self._selected_obj
try:
grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis)
except TypeError:
# panel grouper
grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis)
try:
if isinstance(obj, ABCDataFrame) and compat.callable(how):
# Check if the function is reducing or not.
result = grouped._aggregate_item_by_item(how, *args, **kwargs)
else:
result = grouped.aggregate(how, *args, **kwargs)
except Exception:
# we have a non-reducing function
# try to evaluate
result = grouped.apply(how, *args, **kwargs)
result = self._apply_loffset(result)
return self._wrap_result(result)
示例3: register_writer
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def register_writer(klass):
"""Adds engine to the excel writer registry. You must use this method to
integrate with ``to_excel``. Also adds config options for any new
``supported_extensions`` defined on the writer."""
if not compat.callable(klass):
raise ValueError("Can only register callables as engines")
engine_name = klass.engine
_writers[engine_name] = klass
for ext in klass.supported_extensions:
if ext.startswith('.'):
ext = ext[1:]
if ext not in _writer_extensions:
config.register_option("io.excel.{ext}.writer".format(ext=ext),
engine_name, validator=str)
_writer_extensions.append(ext)
示例4: _groupby_and_aggregate
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs):
""" re-evaluate the obj with a groupby aggregation """
if grouper is None:
self._set_binner()
grouper = self.grouper
obj = self._selected_obj
try:
grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis)
except TypeError:
# panel grouper
grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis)
try:
if isinstance(obj, ABCDataFrame) and compat.callable(how):
# Check if the function is reducing or not.
result = grouped._aggregate_item_by_item(how, *args, **kwargs)
else:
result = grouped.aggregate(how, *args, **kwargs)
except Exception:
# we have a non-reducing function
# try to evaluate
result = grouped.apply(how, *args, **kwargs)
result = self._apply_loffset(result)
return self._wrap_result(result)
示例5: register_writer
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def register_writer(klass):
"""Adds engine to the excel writer registry. You must use this method to
integrate with ``to_excel``. Also adds config options for any new
``supported_extensions`` defined on the writer."""
if not compat.callable(klass):
raise ValueError("Can only register callables as engines")
engine_name = klass.engine
_writers[engine_name] = klass
for ext in klass.supported_extensions:
if ext.startswith('.'):
ext = ext[1:]
if ext not in _writer_extensions:
config.register_option("io.excel.%s.writer" % ext,
engine_name, validator=str)
_writer_extensions.append(ext)
示例6: _make_deprecated_unary
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def _make_deprecated_unary(op, name):
# op is a callable
def _evaluate_numeric_unary(self):
result = self._deprecated(name)
return op(result)
return _evaluate_numeric_unary
示例7: dateutil_parse
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def dateutil_parse(timestr, default,
ignoretz=False, tzinfos=None,
**kwargs):
""" lifted from dateutil to get resolution"""
from dateutil import tz
import time
fobj = StringIO(str(timestr))
res = DEFAULTPARSER._parse(fobj, **kwargs)
# dateutil 2.2 compat
if isinstance(res, tuple):
res, _ = res
if res is None:
raise ValueError("unknown string format")
repl = {}
reso = None
for attr in ["year", "month", "day", "hour",
"minute", "second", "microsecond"]:
value = getattr(res, attr)
if value is not None:
repl[attr] = value
reso = attr
if reso is None:
raise ValueError("Cannot parse date.")
if reso == 'microsecond' and repl['microsecond'] == 0:
reso = 'second'
ret = default.replace(**repl)
if res.weekday is not None and not res.day:
ret = ret + relativedelta.relativedelta(weekday=res.weekday)
if not ignoretz:
if callable(tzinfos) or tzinfos and res.tzname in tzinfos:
if callable(tzinfos):
tzdata = tzinfos(res.tzname, res.tzoffset)
else:
tzdata = tzinfos.get(res.tzname)
if isinstance(tzdata, datetime.tzinfo):
tzinfo = tzdata
elif isinstance(tzdata, compat.string_types):
tzinfo = tz.tzstr(tzdata)
elif isinstance(tzdata, int):
tzinfo = tz.tzoffset(res.tzname, tzdata)
else:
raise ValueError("offset must be tzinfo subclass, "
"tz string, or int offset")
ret = ret.replace(tzinfo=tzinfo)
elif res.tzname and res.tzname in time.tzname:
ret = ret.replace(tzinfo=tz.tzlocal())
elif res.tzoffset == 0:
ret = ret.replace(tzinfo=tz.tzutc())
elif res.tzoffset:
ret = ret.replace(tzinfo=tz.tzoffset(res.tzname, res.tzoffset))
return ret, reso
示例8: knownfailureif
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def knownfailureif(fail_condition, msg=None):
"""
Make function raise KnownFailureTest exception if given condition is true.
If the condition is a callable, it is used at runtime to dynamically
make the decision. This is useful for tests that may require costly
imports, to delay the cost until the test suite is actually executed.
Parameters
----------
fail_condition : bool or callable
Flag to determine whether to mark the decorated test as a known
failure (if True) or not (if False).
msg : str, optional
Message to give on raising a KnownFailureTest exception.
Default is None.
Returns
-------
decorator : function
Decorator, which, when applied to a function, causes SkipTest
to be raised when `skip_condition` is True, and the function
to be called normally otherwise.
Notes
-----
The decorator itself is decorated with the ``nose.tools.make_decorator``
function in order to transmit function name, and various other metadata.
"""
if msg is None:
msg = 'Test skipped due to known failure'
# Allow for both boolean or callable known failure conditions.
if callable(fail_condition):
fail_val = fail_condition
else:
fail_val = lambda: fail_condition
def knownfail_decorator(f):
# Local import to avoid a hard nose dependency and only incur the
# import time overhead at actual test-time.
import nose
def knownfailer(*args, **kwargs):
if fail_val():
raise KnownFailureTest(msg)
else:
return f(*args, **kwargs)
return nose.tools.make_decorator(f)(knownfailer)
return knownfail_decorator
示例9: apply
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def apply(self, f, *args, **kwargs):
""" iterate over the blocks, collect and create a new block manager
Parameters
----------
f : the callable or function name to operate on at the block level
axes : optional (if not supplied, use self.axes)
filter : list, if supplied, only call the block if the filter is in
the block
"""
axes = kwargs.pop('axes', None)
filter = kwargs.get('filter')
do_integrity_check = kwargs.pop('do_integrity_check', False)
result_blocks = []
for blk in self.blocks:
if filter is not None:
kwargs['filter'] = set(kwargs['filter'])
if not blk.items.isin(filter).any():
result_blocks.append(blk)
continue
if callable(f):
applied = f(blk, *args, **kwargs)
# if we are no a block, try to coerce
if not isinstance(applied, Block):
applied = make_block(applied,
blk.items,
blk.ref_items)
else:
applied = getattr(blk, f)(*args, **kwargs)
if isinstance(applied, list):
result_blocks.extend(applied)
else:
result_blocks.append(applied)
if len(result_blocks) == 0:
return self.make_empty(axes or self.axes)
bm = self.__class__(result_blocks, axes or self.axes,
do_integrity_check=do_integrity_check)
bm._consolidate_inplace()
return bm
示例10: read_msgpack
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import callable [as 別名]
def read_msgpack(path_or_buf, encoding='utf-8', iterator=False, **kwargs):
"""
Load msgpack pandas object from the specified
file path
THIS IS AN EXPERIMENTAL LIBRARY and the storage format
may not be stable until a future release.
Parameters
----------
path_or_buf : string File path, BytesIO like or string
encoding: Encoding for decoding msgpack str type
iterator : boolean, if True, return an iterator to the unpacker
(default is False)
Returns
-------
obj : type of object stored in file
"""
path_or_buf, _, _ = get_filepath_or_buffer(path_or_buf)
if iterator:
return Iterator(path_or_buf)
def read(fh):
l = list(unpack(fh, encoding=encoding, **kwargs))
if len(l) == 1:
return l[0]
return l
# see if we have an actual file
if isinstance(path_or_buf, compat.string_types):
try:
exists = os.path.exists(path_or_buf)
except (TypeError, ValueError):
exists = False
if exists:
with open(path_or_buf, 'rb') as fh:
return read(fh)
# treat as a binary-like
if isinstance(path_or_buf, compat.binary_type):
fh = None
try:
fh = compat.BytesIO(path_or_buf)
return read(fh)
finally:
if fh is not None:
fh.close()
# a buffer like
if hasattr(path_or_buf, 'read') and compat.callable(path_or_buf.read):
return read(path_or_buf)
raise ValueError('path_or_buf needs to be a string file path or file-like')