本文整理匯總了Python中pandas.compat.OrderedDict方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.OrderedDict方法的具體用法?Python compat.OrderedDict怎麽用?Python compat.OrderedDict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas.compat
的用法示例。
在下文中一共展示了compat.OrderedDict方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_aggregate_str_func
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_aggregate_str_func(tsframe, groupbyfunc):
grouped = tsframe.groupby(groupbyfunc)
# single series
result = grouped['A'].agg('std')
expected = grouped['A'].std()
tm.assert_series_equal(result, expected)
# group frame by function name
result = grouped.aggregate('var')
expected = grouped.var()
tm.assert_frame_equal(result, expected)
# group frame by function dict
result = grouped.agg(OrderedDict([['A', 'var'],
['B', 'std'],
['C', 'mean'],
['D', 'sem']]))
expected = DataFrame(OrderedDict([['A', grouped['A'].var()],
['B', grouped['B'].std()],
['C', grouped['C'].mean()],
['D', grouped['D'].sem()]]))
tm.assert_frame_equal(result, expected)
示例2: _write_cell
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def _write_cell(self, s, kind='td', indent=0, tags=None):
if tags is not None:
start_tag = '<{kind} {tags}>'.format(kind=kind, tags=tags)
else:
start_tag = '<{kind}>'.format(kind=kind)
if self.escape:
# escape & first to prevent double escaping of &
esc = OrderedDict([('&', r'&'), ('<', r'<'),
('>', r'>')])
else:
esc = {}
rs = pprint_thing(s, escape_chars=esc).strip()
if self.render_links and _is_url(rs):
rs_unescaped = pprint_thing(s, escape_chars={}).strip()
start_tag += '<a href="{url}" target="_blank">'.format(
url=rs_unescaped)
end_a = '</a>'
else:
end_a = ''
self.write(u'{start}{rs}{end_a}</{kind}>'.format(
start=start_tag, rs=rs, end_a=end_a, kind=kind), indent)
示例3: test_ctor_orderedDict
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_ctor_orderedDict(self):
keys = list(set(np.random.randint(0, 5000, 100)))[
:50] # unique random int keys
d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
p = Panel(d)
assert list(p.items) == keys
p = Panel.from_dict(d)
assert list(p.items) == keys
示例4: test_more_flexible_frame_multi_function
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_more_flexible_frame_multi_function(df):
grouped = df.groupby('A')
exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))
expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
# be careful
result = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
expected = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
tm.assert_frame_equal(result, expected)
def foo(x):
return np.mean(x)
def bar(x):
return np.std(x, ddof=1)
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
d = OrderedDict([['C', np.mean],
['D', OrderedDict([['foo', np.mean],
['bar', np.std]])]])
result = grouped.aggregate(d)
d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
expected = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
示例5: test_multi_function_flexible_mix
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_multi_function_flexible_mix(df):
# GH #1268
grouped = df.groupby('A')
# Expected
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', {'sum': 'sum'}]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = grouped.aggregate(d)
# Test 1
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', 'sum']])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
# Test 2
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], ['bar', 'std']])],
['D', ['sum']]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = grouped.aggregate(d)
tm.assert_frame_equal(result, expected)
示例6: _init_dict
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def _init_dict(self, data, axes, dtype=None):
haxis = axes.pop(self._info_axis_number)
# prefilter if haxis passed
if haxis is not None:
haxis = ensure_index(haxis)
data = OrderedDict((k, v)
for k, v in compat.iteritems(data)
if k in haxis)
else:
keys = com.dict_keys_to_ordered_list(data)
haxis = Index(keys)
for k, v in compat.iteritems(data):
if isinstance(v, dict):
data[k] = self._constructor_sliced(v)
# extract axis for remaining axes & create the slicemap
raxes = [self._extract_axis(self, data, axis=i) if a is None else a
for i, a in enumerate(axes)]
raxes_sm = self._extract_axes_for_slice(self, raxes)
# shallow copy
arrays = []
haxis_shape = [len(a) for a in raxes]
for h in haxis:
v = values = data.get(h)
if v is None:
values = np.empty(haxis_shape, dtype=dtype)
values.fill(np.nan)
elif isinstance(v, self._constructor_sliced):
d = raxes_sm.copy()
d['copy'] = False
v = v.reindex(**d)
if dtype is not None:
v = v.astype(dtype)
values = v.values
arrays.append(values)
return self._init_arrays(arrays, haxis, [haxis] + raxes)
示例7: from_dict
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def from_dict(cls, data, intersect=False, orient='items', dtype=None):
"""
Construct Panel from dict of DataFrame objects.
Parameters
----------
data : dict
{field : DataFrame}
intersect : boolean
Intersect indexes of input DataFrames
orient : {'items', 'minor'}, default 'items'
The "orientation" of the data. If the keys of the passed dict
should be the items of the result panel, pass 'items'
(default). Otherwise if the columns of the values of the passed
DataFrame objects should be the items (which in the case of
mixed-dtype data you should do), instead pass 'minor'
dtype : dtype, default None
Data type to force, otherwise infer
Returns
-------
Panel
"""
from collections import defaultdict
orient = orient.lower()
if orient == 'minor':
new_data = defaultdict(OrderedDict)
for col, df in compat.iteritems(data):
for item, s in compat.iteritems(df):
new_data[item][col] = s
data = new_data
elif orient != 'items': # pragma: no cover
raise ValueError('Orientation must be one of {items, minor}.')
d = cls._homogenize_dict(cls, data, intersect=intersect, dtype=dtype)
ks = list(d['data'].keys())
if not isinstance(d['data'], OrderedDict):
ks = list(sorted(ks))
d[cls._info_axis_name] = Index(ks)
return cls(**d)
示例8: dict_keys_to_ordered_list
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def dict_keys_to_ordered_list(mapping):
# when pandas drops support for Python < 3.6, this function
# can be replaced by a simple list(mapping.keys())
if PY36 or isinstance(mapping, OrderedDict):
keys = list(mapping.keys())
else:
keys = try_sort(mapping)
return keys
示例9: test_ctor_orderedDict
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_ctor_orderedDict(self):
with catch_warnings(record=True):
keys = list(set(np.random.randint(0, 5000, 100)))[
:50] # unique random int keys
d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
p = Panel(d)
assert list(p.items) == keys
p = Panel.from_dict(d)
assert list(p.items) == keys
示例10: _dict_keys_to_ordered_list
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def _dict_keys_to_ordered_list(mapping):
# when pandas drops support for Python < 3.6, this function
# can be replaced by a simple list(mapping.keys())
if PY36 or isinstance(mapping, OrderedDict):
keys = list(mapping.keys())
else:
keys = _try_sort(mapping)
return keys
示例11: _to_recarray
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def _to_recarray(self, data, columns):
dtypes = []
o = compat.OrderedDict()
# use the columns to "order" the keys
# in the unordered 'data' dictionary
for col in columns:
dtypes.append((str(col), data[col].dtype))
o[col] = data[col]
tuples = lzip(*o.values())
return np.array(tuples, dtypes)
示例12: test_aggregate_str_func
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_aggregate_str_func(self):
def _check_results(grouped):
# single series
result = grouped['A'].agg('std')
expected = grouped['A'].std()
assert_series_equal(result, expected)
# group frame by function name
result = grouped.aggregate('var')
expected = grouped.var()
assert_frame_equal(result, expected)
# group frame by function dict
result = grouped.agg(OrderedDict([['A', 'var'], ['B', 'std'],
['C', 'mean'], ['D', 'sem']]))
expected = DataFrame(OrderedDict([['A', grouped['A'].var(
)], ['B', grouped['B'].std()], ['C', grouped['C'].mean()],
['D', grouped['D'].sem()]]))
assert_frame_equal(result, expected)
by_weekday = self.tsframe.groupby(lambda x: x.weekday())
_check_results(by_weekday)
by_mwkday = self.tsframe.groupby([lambda x: x.month,
lambda x: x.weekday()])
_check_results(by_mwkday)
示例13: test_more_flexible_frame_multi_function
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_more_flexible_frame_multi_function(self):
grouped = self.df.groupby('A')
exmean = grouped.agg(OrderedDict([['C', np.mean], ['D', np.mean]]))
exstd = grouped.agg(OrderedDict([['C', np.std], ['D', np.std]]))
expected = concat([exmean, exstd], keys=['mean', 'std'], axis=1)
expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
d = OrderedDict([['C', [np.mean, np.std]], ['D', [np.mean, np.std]]])
result = grouped.aggregate(d)
assert_frame_equal(result, expected)
# be careful
result = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
expected = grouped.aggregate(OrderedDict([['C', np.mean],
['D', [np.mean, np.std]]]))
assert_frame_equal(result, expected)
def foo(x):
return np.mean(x)
def bar(x):
return np.std(x, ddof=1)
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
d = OrderedDict([['C', np.mean], ['D', OrderedDict(
[['foo', np.mean], ['bar', np.std]])]])
result = grouped.aggregate(d)
d = OrderedDict([['C', [np.mean]], ['D', [foo, bar]]])
expected = grouped.aggregate(d)
assert_frame_equal(result, expected)
示例14: test_multi_function_flexible_mix
# 需要導入模塊: from pandas import compat [as 別名]
# 或者: from pandas.compat import OrderedDict [as 別名]
def test_multi_function_flexible_mix(self):
# GH #1268
grouped = self.df.groupby('A')
d = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
'bar', 'std'
]])], ['D', 'sum']])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result = grouped.aggregate(d)
d2 = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
'bar', 'std'
]])], ['D', ['sum']]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
result2 = grouped.aggregate(d2)
d3 = OrderedDict([['C', OrderedDict([['foo', 'mean'], [
'bar', 'std'
]])], ['D', {'sum': 'sum'}]])
# this uses column selection & renaming
with tm.assert_produces_warning(FutureWarning,
check_stacklevel=False):
expected = grouped.aggregate(d3)
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)