本文整理匯總了Python中pandas.bdate_range方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.bdate_range方法的具體用法?Python pandas.bdate_range怎麽用?Python pandas.bdate_range使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.bdate_range方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_dti_business_getitem
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_dti_business_getitem(self):
rng = pd.bdate_range(START, END)
smaller = rng[:5]
exp = DatetimeIndex(rng.view(np.ndarray)[:5])
tm.assert_index_equal(smaller, exp)
assert smaller.freq == rng.freq
sliced = rng[::5]
assert sliced.freq == BDay() * 5
fancy_indexed = rng[[4, 3, 2, 1, 0]]
assert len(fancy_indexed) == 5
assert isinstance(fancy_indexed, DatetimeIndex)
assert fancy_indexed.freq is None
# 32-bit vs. 64-bit platforms
assert rng[4] == rng[np.int_(4)]
示例2: test_dti_custom_getitem
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_dti_custom_getitem(self):
rng = pd.bdate_range(START, END, freq='C')
smaller = rng[:5]
exp = DatetimeIndex(rng.view(np.ndarray)[:5])
tm.assert_index_equal(smaller, exp)
assert smaller.freq == rng.freq
sliced = rng[::5]
assert sliced.freq == CDay() * 5
fancy_indexed = rng[[4, 3, 2, 1, 0]]
assert len(fancy_indexed) == 5
assert isinstance(fancy_indexed, DatetimeIndex)
assert fancy_indexed.freq is None
# 32-bit vs. 64-bit platforms
assert rng[4] == rng[np.int_(4)]
示例3: test_apply_series_to_frame
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_apply_series_to_frame():
def f(piece):
with np.errstate(invalid='ignore'):
logged = np.log(piece)
return DataFrame({'value': piece,
'demeaned': piece - piece.mean(),
'logged': logged})
dr = bdate_range('1/1/2000', periods=100)
ts = Series(np.random.randn(100), index=dr)
grouped = ts.groupby(lambda x: x.month)
result = grouped.apply(f)
assert isinstance(result, DataFrame)
tm.assert_index_equal(result.index, ts.index)
示例4: test_resample_bms_2752
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_resample_bms_2752(self):
# GH2753
foo = Series(index=pd.bdate_range('20000101', '20000201'))
res1 = foo.resample("BMS").mean()
res2 = foo.resample("BMS").mean().resample("B").mean()
assert res1.index[0] == Timestamp('20000103')
assert res1.index[0] == res2.index[0]
# def test_monthly_convention_span(self):
# rng = period_range('2000-01', periods=3, freq='M')
# ts = Series(np.arange(3), index=rng)
# # hacky way to get same thing
# exp_index = period_range('2000-01-01', '2000-03-31', freq='D')
# expected = ts.asfreq('D', how='end').reindex(exp_index)
# expected = expected.fillna(method='bfill')
# result = ts.resample('D', convention='span').mean()
# assert_series_equal(result, expected)
示例5: test_shift
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_shift(self):
series = SparseSeries([nan, 1., 2., 3., nan, nan],
index=np.arange(6))
shifted = series.shift(0)
self.assert_(shifted is not series)
assert_sp_series_equal(shifted, series)
f = lambda s: s.shift(1)
_dense_series_compare(series, f)
f = lambda s: s.shift(-2)
_dense_series_compare(series, f)
series = SparseSeries([nan, 1., 2., 3., nan, nan],
index=bdate_range('1/1/2000', periods=6))
f = lambda s: s.shift(2, freq='B')
_dense_series_compare(series, f)
f = lambda s: s.shift(2, freq=datetools.bday)
_dense_series_compare(series, f)
示例6: test_resample_bms_2752
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_resample_bms_2752(self):
# GH2753
foo = pd.Series(index=pd.bdate_range('20000101','20000201'))
res1 = foo.resample("BMS")
res2 = foo.resample("BMS").resample("B")
self.assertEqual(res1.index[0], Timestamp('20000103'))
self.assertEqual(res1.index[0], res2.index[0])
# def test_monthly_convention_span(self):
# rng = period_range('2000-01', periods=3, freq='M')
# ts = Series(np.arange(3), index=rng)
# # hacky way to get same thing
# exp_index = period_range('2000-01-01', '2000-03-31', freq='D')
# expected = ts.asfreq('D', how='end').reindex(exp_index)
# expected = expected.fillna(method='bfill')
# result = ts.resample('D', convention='span')
# assert_series_equal(result, expected)
示例7: test_legacy_time_rule_arg
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_legacy_time_rule_arg(self):
# suppress deprecation warnings
sys.stderr = StringIO()
rng = bdate_range('1/1/2000', periods=20)
ts = Series(np.random.randn(20), index=rng)
ts = ts.take(np.random.permutation(len(ts))[:12]).sort_index()
try:
result = mom.rolling_mean(ts, 1, min_periods=1, freq='B')
expected = mom.rolling_mean(ts, 1, min_periods=1,
time_rule='WEEKDAY')
tm.assert_series_equal(result, expected)
result = mom.ewma(ts, span=5, freq='B')
expected = mom.ewma(ts, span=5, time_rule='WEEKDAY')
tm.assert_series_equal(result, expected)
finally:
sys.stderr = sys.__stderr__
示例8: _create_sp_tsseries
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def _create_sp_tsseries():
import numpy as np
from pandas import bdate_range, SparseTimeSeries
nan = np.nan
# nan-based
arr = np.arange(15, dtype=np.float64)
index = np.arange(15)
arr[7:12] = nan
arr[-1:] = nan
date_index = bdate_range('1/1/2011', periods=len(index))
bseries = SparseTimeSeries(arr, index=date_index, kind='block')
bseries.name = 'btsseries'
return bseries
示例9: test_reindex_fill_value
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_reindex_fill_value(self, float_frame_fill0,
float_frame_fill0_dense):
rng = bdate_range('20110110', periods=20)
result = float_frame_fill0.reindex(rng, fill_value=0)
exp = float_frame_fill0_dense.reindex(rng, fill_value=0)
exp = exp.to_sparse(float_frame_fill0.default_fill_value)
tm.assert_sp_frame_equal(result, exp)
示例10: dates
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def dates():
return bdate_range('1/1/2011', periods=10)
示例11: test_dti_business_getitem_matplotlib_hackaround
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_dti_business_getitem_matplotlib_hackaround(self):
rng = pd.bdate_range(START, END)
values = rng[:, None]
expected = rng.values[:, None]
tm.assert_numpy_array_equal(values, expected)
示例12: test_dti_tz_localize_bdate_range
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_dti_tz_localize_bdate_range(self):
dr = pd.bdate_range('1/1/2009', '1/1/2010')
dr_utc = pd.bdate_range('1/1/2009', '1/1/2010', tz=pytz.utc)
localized = dr.tz_localize(pytz.utc)
tm.assert_index_equal(dr_utc, localized)
示例13: test_with_tz
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_with_tz(self, tz):
# just want it to work
start = datetime(2011, 3, 12, tzinfo=pytz.utc)
dr = bdate_range(start, periods=50, freq=pd.offsets.Hour())
assert dr.tz is pytz.utc
# DateRange with naive datetimes
dr = bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc)
dr = bdate_range('1/1/2005', '1/1/2009', tz=tz)
# normalized
central = dr.tz_convert(tz)
assert central.tz is tz
naive = central[0].to_pydatetime().replace(tzinfo=None)
comp = conversion.localize_pydatetime(naive, tz).tzinfo
assert central[0].tz is comp
# compare vs a localized tz
naive = dr[0].to_pydatetime().replace(tzinfo=None)
comp = conversion.localize_pydatetime(naive, tz).tzinfo
assert central[0].tz is comp
# datetimes with tzinfo set
dr = bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc),
datetime(2009, 1, 1, tzinfo=pytz.utc))
with pytest.raises(Exception):
bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009',
tz=tz)
示例14: test_constructor
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_constructor(self):
bdate_range(START, END, freq=BDay())
bdate_range(START, periods=20, freq=BDay())
bdate_range(end=START, periods=20, freq=BDay())
msg = 'periods must be a number, got B'
with pytest.raises(TypeError, match=msg):
date_range('2011-1-1', '2012-1-1', 'B')
with pytest.raises(TypeError, match=msg):
bdate_range('2011-1-1', '2012-1-1', 'B')
msg = 'freq must be specified for bdate_range; use date_range instead'
with pytest.raises(TypeError, match=msg):
bdate_range(START, END, periods=10, freq=None)
示例15: test_naive_aware_conflicts
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import bdate_range [as 別名]
def test_naive_aware_conflicts(self):
naive = bdate_range(START, END, freq=BDay(), tz=None)
aware = bdate_range(START, END, freq=BDay(), tz="Asia/Hong_Kong")
msg = 'tz-naive.*tz-aware'
with pytest.raises(TypeError, match=msg):
naive.join(aware)
with pytest.raises(TypeError, match=msg):
aware.join(naive)