本文整理匯總了Python中pandas._libs.lib.maybe_convert_objects方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.maybe_convert_objects方法的具體用法?Python lib.maybe_convert_objects怎麽用?Python lib.maybe_convert_objects使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas._libs.lib
的用法示例。
在下文中一共展示了lib.maybe_convert_objects方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_maybe_convert_objects_uint64
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_maybe_convert_objects_uint64(self):
# see gh-4471
arr = np.array([2**63], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
# NumPy bug: can't compare uint64 to int64, as that
# results in both casting to float64, so we should
# make sure that this function is robust against it
arr = np.array([np.uint64(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2, -1], dtype=object)
exp = np.array([2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2**63, -1], dtype=object)
exp = np.array([2**63, -1], dtype=object)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
示例2: _convert_object_array
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
if columns is None:
columns = ibase.default_index(len(content))
else:
if len(columns) != len(content): # pragma: no cover
# caller's responsibility to check for this...
raise AssertionError('{col:d} columns passed, passed data had '
'{con} columns'.format(col=len(columns),
con=len(content)))
# provide soft conversion of object dtypes
def convert(arr):
if dtype != object and dtype != np.object:
arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
arr = maybe_cast_to_datetime(arr, dtype)
return arr
arrays = [convert(arr) for arr in content]
return arrays, columns
# ---------------------------------------------------------------------
# Series-Based
示例3: _aggregate_series_pure_python
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _aggregate_series_pure_python(self, obj, func):
group_index, _, ngroups = self.group_info
counts = np.zeros(ngroups, dtype=int)
result = None
splitter = get_splitter(obj, group_index, ngroups, axis=self.axis)
for label, group in splitter:
res = func(group)
if result is None:
if (isinstance(res, (Series, Index, np.ndarray))):
raise ValueError('Function does not reduce')
result = np.empty(ngroups, dtype='O')
counts[label] = group.shape[0]
result[label] = res
result = lib.maybe_convert_objects(result, try_float=0)
return result, counts
示例4: _aggregate_series_pure_python
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _aggregate_series_pure_python(self, obj, func):
group_index, _, ngroups = self.group_info
counts = np.zeros(ngroups, dtype=int)
result = None
splitter = get_splitter(obj, group_index, ngroups, axis=self.axis)
for label, group in splitter:
res = func(group)
if result is None:
if (isinstance(res, (Series, Index, np.ndarray)) or
isinstance(res, list)):
raise ValueError('Function does not reduce')
result = np.empty(ngroups, dtype='O')
counts[label] = group.shape[0]
result[label] = res
result = lib.maybe_convert_objects(result, try_float=0)
return result, counts
示例5: test_convert_int_overflow
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_convert_int_overflow(self, value):
# see gh-18584
arr = np.array([value], dtype=object)
result = lib.maybe_convert_objects(arr)
tm.assert_numpy_array_equal(arr, result)
示例6: test_mixed_dtypes_remain_object_array
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_mixed_dtypes_remain_object_array(self):
# GH14956
array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1],
dtype=object)
result = lib.maybe_convert_objects(array, convert_datetime=1)
tm.assert_numpy_array_equal(result, array)
示例7: _map
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _map(f, arr, na_mask=False, na_value=np.nan, dtype=object):
if not len(arr):
return np.ndarray(0, dtype=dtype)
if isinstance(arr, ABCSeries):
arr = arr.values
if not isinstance(arr, np.ndarray):
arr = np.asarray(arr, dtype=object)
if na_mask:
mask = isna(arr)
try:
convert = not all(mask)
result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert)
except (TypeError, AttributeError) as e:
# Reraise the exception if callable `f` got wrong number of args.
# The user may want to be warned by this, instead of getting NaN
if compat.PY2:
p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?'
else:
p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ '
r'(?(3)required )positional arguments?')
if len(e.args) >= 1 and re.search(p_err, e.args[0]):
raise e
def g(x):
try:
return f(x)
except (TypeError, AttributeError):
return na_value
return _map(g, arr, dtype=dtype)
if na_value is not np.nan:
np.putmask(result, mask, na_value)
if result.dtype == object:
result = lib.maybe_convert_objects(result)
return result
else:
return lib.map_infer(arr, f)
示例8: maybe_convert_platform
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_platform(values):
""" try to do platform conversion, allow ndarray or list here """
if isinstance(values, (list, tuple)):
values = construct_1d_object_array_from_listlike(list(values))
if getattr(values, 'dtype', None) == np.object_:
if hasattr(values, '_values'):
values = values._values
values = lib.maybe_convert_objects(values)
return values
示例9: maybe_convert_platform
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_platform(values):
""" try to do platform conversion, allow ndarray or list here """
if isinstance(values, (list, tuple)):
values = lib.list_to_object_array(list(values))
if getattr(values, 'dtype', None) == np.object_:
if hasattr(values, '_values'):
values = values._values
values = lib.maybe_convert_objects(values)
return values
示例10: maybe_convert_objects
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_objects(values, convert_dates=True, convert_numeric=True,
convert_timedeltas=True, copy=True):
""" if we have an object dtype, try to coerce dates and/or numbers """
# if we have passed in a list or scalar
if isinstance(values, (list, tuple)):
values = np.array(values, dtype=np.object_)
if not hasattr(values, 'dtype'):
values = np.array([values], dtype=np.object_)
# convert dates
if convert_dates and values.dtype == np.object_:
# we take an aggressive stance and convert to datetime64[ns]
if convert_dates == 'coerce':
new_values = maybe_cast_to_datetime(
values, 'M8[ns]', errors='coerce')
# if we are all nans then leave me alone
if not isna(new_values).all():
values = new_values
else:
values = lib.maybe_convert_objects(values,
convert_datetime=convert_dates)
# convert timedeltas
if convert_timedeltas and values.dtype == np.object_:
if convert_timedeltas == 'coerce':
from pandas.core.tools.timedeltas import to_timedelta
new_values = to_timedelta(values, errors='coerce')
# if we are all nans then leave me alone
if not isna(new_values).all():
values = new_values
else:
values = lib.maybe_convert_objects(
values, convert_timedelta=convert_timedeltas)
# convert to numeric
if values.dtype == np.object_:
if convert_numeric:
try:
new_values = lib.maybe_convert_numeric(values, set(),
coerce_numeric=True)
# if we are all nans then leave me alone
if not isna(new_values).all():
values = new_values
except Exception:
pass
else:
# soft-conversion
values = lib.maybe_convert_objects(values)
values = values.copy() if copy else values
return values
示例11: soft_convert_objects
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def soft_convert_objects(values, datetime=True, numeric=True, timedelta=True,
coerce=False, copy=True):
""" if we have an object dtype, try to coerce dates and/or numbers """
conversion_count = sum((datetime, numeric, timedelta))
if conversion_count == 0:
raise ValueError('At least one of datetime, numeric or timedelta must '
'be True.')
elif conversion_count > 1 and coerce:
raise ValueError("Only one of 'datetime', 'numeric' or "
"'timedelta' can be True when when coerce=True.")
if isinstance(values, (list, tuple)):
# List or scalar
values = np.array(values, dtype=np.object_)
elif not hasattr(values, 'dtype'):
values = np.array([values], dtype=np.object_)
elif not is_object_dtype(values.dtype):
# If not object, do not attempt conversion
values = values.copy() if copy else values
return values
# If 1 flag is coerce, ensure 2 others are False
if coerce:
# Immediate return if coerce
if datetime:
from pandas import to_datetime
return to_datetime(values, errors='coerce', box=False)
elif timedelta:
from pandas import to_timedelta
return to_timedelta(values, errors='coerce', box=False)
elif numeric:
from pandas import to_numeric
return to_numeric(values, errors='coerce')
# Soft conversions
if datetime:
# GH 20380, when datetime is beyond year 2262, hence outside
# bound of nanosecond-resolution 64-bit integers.
try:
values = lib.maybe_convert_objects(values,
convert_datetime=datetime)
except OutOfBoundsDatetime:
pass
if timedelta and is_object_dtype(values.dtype):
# Object check to ensure only run if previous did not convert
values = lib.maybe_convert_objects(values, convert_timedelta=timedelta)
if numeric and is_object_dtype(values.dtype):
try:
converted = lib.maybe_convert_numeric(values, set(),
coerce_numeric=True)
# If all NaNs, then do not-alter
values = converted if not isna(converted).all() else values
values = values.copy() if copy else values
except Exception:
pass
return values