當前位置: 首頁>>代碼示例>>Python>>正文


Python lib.maybe_convert_objects方法代碼示例

本文整理匯總了Python中pandas._libs.lib.maybe_convert_objects方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.maybe_convert_objects方法的具體用法?Python lib.maybe_convert_objects怎麽用?Python lib.maybe_convert_objects使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas._libs.lib的用法示例。


在下文中一共展示了lib.maybe_convert_objects方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_maybe_convert_objects_uint64

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_maybe_convert_objects_uint64(self):
        # see gh-4471
        arr = np.array([2**63], dtype=object)
        exp = np.array([2**63], dtype=np.uint64)
        tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)

        # NumPy bug: can't compare uint64 to int64, as that
        # results in both casting to float64, so we should
        # make sure that this function is robust against it
        arr = np.array([np.uint64(2**63)], dtype=object)
        exp = np.array([2**63], dtype=np.uint64)
        tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)

        arr = np.array([2, -1], dtype=object)
        exp = np.array([2, -1], dtype=np.int64)
        tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)

        arr = np.array([2**63, -1], dtype=object)
        exp = np.array([2**63, -1], dtype=object)
        tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_inference.py

示例2: _convert_object_array

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
    if columns is None:
        columns = ibase.default_index(len(content))
    else:
        if len(columns) != len(content):  # pragma: no cover
            # caller's responsibility to check for this...
            raise AssertionError('{col:d} columns passed, passed data had '
                                 '{con} columns'.format(col=len(columns),
                                                        con=len(content)))

    # provide soft conversion of object dtypes
    def convert(arr):
        if dtype != object and dtype != np.object:
            arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
            arr = maybe_cast_to_datetime(arr, dtype)
        return arr

    arrays = [convert(arr) for arr in content]

    return arrays, columns


# ---------------------------------------------------------------------
# Series-Based 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:construction.py

示例3: _aggregate_series_pure_python

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _aggregate_series_pure_python(self, obj, func):

        group_index, _, ngroups = self.group_info

        counts = np.zeros(ngroups, dtype=int)
        result = None

        splitter = get_splitter(obj, group_index, ngroups, axis=self.axis)

        for label, group in splitter:
            res = func(group)
            if result is None:
                if (isinstance(res, (Series, Index, np.ndarray))):
                    raise ValueError('Function does not reduce')
                result = np.empty(ngroups, dtype='O')

            counts[label] = group.shape[0]
            result[label] = res

        result = lib.maybe_convert_objects(result, try_float=0)
        return result, counts 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:23,代碼來源:ops.py

示例4: _aggregate_series_pure_python

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _aggregate_series_pure_python(self, obj, func):

        group_index, _, ngroups = self.group_info

        counts = np.zeros(ngroups, dtype=int)
        result = None

        splitter = get_splitter(obj, group_index, ngroups, axis=self.axis)

        for label, group in splitter:
            res = func(group)
            if result is None:
                if (isinstance(res, (Series, Index, np.ndarray)) or
                        isinstance(res, list)):
                    raise ValueError('Function does not reduce')
                result = np.empty(ngroups, dtype='O')

            counts[label] = group.shape[0]
            result[label] = res

        result = lib.maybe_convert_objects(result, try_float=0)
        return result, counts 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:24,代碼來源:groupby.py

示例5: test_convert_int_overflow

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_convert_int_overflow(self, value):
        # see gh-18584
        arr = np.array([value], dtype=object)
        result = lib.maybe_convert_objects(arr)
        tm.assert_numpy_array_equal(arr, result) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:test_inference.py

示例6: test_mixed_dtypes_remain_object_array

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def test_mixed_dtypes_remain_object_array(self):
        # GH14956
        array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1],
                         dtype=object)
        result = lib.maybe_convert_objects(array, convert_datetime=1)
        tm.assert_numpy_array_equal(result, array) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_inference.py

示例7: _map

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def _map(f, arr, na_mask=False, na_value=np.nan, dtype=object):
    if not len(arr):
        return np.ndarray(0, dtype=dtype)

    if isinstance(arr, ABCSeries):
        arr = arr.values
    if not isinstance(arr, np.ndarray):
        arr = np.asarray(arr, dtype=object)
    if na_mask:
        mask = isna(arr)
        try:
            convert = not all(mask)
            result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert)
        except (TypeError, AttributeError) as e:
            # Reraise the exception if callable `f` got wrong number of args.
            # The user may want to be warned by this, instead of getting NaN
            if compat.PY2:
                p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?'
            else:
                p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ '
                         r'(?(3)required )positional arguments?')

            if len(e.args) >= 1 and re.search(p_err, e.args[0]):
                raise e

            def g(x):
                try:
                    return f(x)
                except (TypeError, AttributeError):
                    return na_value

            return _map(g, arr, dtype=dtype)
        if na_value is not np.nan:
            np.putmask(result, mask, na_value)
            if result.dtype == object:
                result = lib.maybe_convert_objects(result)
        return result
    else:
        return lib.map_infer(arr, f) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:41,代碼來源:strings.py

示例8: maybe_convert_platform

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_platform(values):
    """ try to do platform conversion, allow ndarray or list here """

    if isinstance(values, (list, tuple)):
        values = construct_1d_object_array_from_listlike(list(values))
    if getattr(values, 'dtype', None) == np.object_:
        if hasattr(values, '_values'):
            values = values._values
        values = lib.maybe_convert_objects(values)

    return values 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:13,代碼來源:cast.py

示例9: maybe_convert_platform

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_platform(values):
    """ try to do platform conversion, allow ndarray or list here """

    if isinstance(values, (list, tuple)):
        values = lib.list_to_object_array(list(values))
    if getattr(values, 'dtype', None) == np.object_:
        if hasattr(values, '_values'):
            values = values._values
        values = lib.maybe_convert_objects(values)

    return values 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:13,代碼來源:cast.py

示例10: maybe_convert_objects

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def maybe_convert_objects(values, convert_dates=True, convert_numeric=True,
                          convert_timedeltas=True, copy=True):
    """ if we have an object dtype, try to coerce dates and/or numbers """

    # if we have passed in a list or scalar
    if isinstance(values, (list, tuple)):
        values = np.array(values, dtype=np.object_)
    if not hasattr(values, 'dtype'):
        values = np.array([values], dtype=np.object_)

    # convert dates
    if convert_dates and values.dtype == np.object_:

        # we take an aggressive stance and convert to datetime64[ns]
        if convert_dates == 'coerce':
            new_values = maybe_cast_to_datetime(
                values, 'M8[ns]', errors='coerce')

            # if we are all nans then leave me alone
            if not isna(new_values).all():
                values = new_values

        else:
            values = lib.maybe_convert_objects(values,
                                               convert_datetime=convert_dates)

    # convert timedeltas
    if convert_timedeltas and values.dtype == np.object_:

        if convert_timedeltas == 'coerce':
            from pandas.core.tools.timedeltas import to_timedelta
            new_values = to_timedelta(values, errors='coerce')

            # if we are all nans then leave me alone
            if not isna(new_values).all():
                values = new_values

        else:
            values = lib.maybe_convert_objects(
                values, convert_timedelta=convert_timedeltas)

    # convert to numeric
    if values.dtype == np.object_:
        if convert_numeric:
            try:
                new_values = lib.maybe_convert_numeric(values, set(),
                                                       coerce_numeric=True)

                # if we are all nans then leave me alone
                if not isna(new_values).all():
                    values = new_values

            except Exception:
                pass
        else:
            # soft-conversion
            values = lib.maybe_convert_objects(values)

    values = values.copy() if copy else values

    return values 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:63,代碼來源:cast.py

示例11: soft_convert_objects

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_objects [as 別名]
def soft_convert_objects(values, datetime=True, numeric=True, timedelta=True,
                         coerce=False, copy=True):
    """ if we have an object dtype, try to coerce dates and/or numbers """

    conversion_count = sum((datetime, numeric, timedelta))
    if conversion_count == 0:
        raise ValueError('At least one of datetime, numeric or timedelta must '
                         'be True.')
    elif conversion_count > 1 and coerce:
        raise ValueError("Only one of 'datetime', 'numeric' or "
                         "'timedelta' can be True when when coerce=True.")

    if isinstance(values, (list, tuple)):
        # List or scalar
        values = np.array(values, dtype=np.object_)
    elif not hasattr(values, 'dtype'):
        values = np.array([values], dtype=np.object_)
    elif not is_object_dtype(values.dtype):
        # If not object, do not attempt conversion
        values = values.copy() if copy else values
        return values

    # If 1 flag is coerce, ensure 2 others are False
    if coerce:
        # Immediate return if coerce
        if datetime:
            from pandas import to_datetime
            return to_datetime(values, errors='coerce', box=False)
        elif timedelta:
            from pandas import to_timedelta
            return to_timedelta(values, errors='coerce', box=False)
        elif numeric:
            from pandas import to_numeric
            return to_numeric(values, errors='coerce')

    # Soft conversions
    if datetime:
        # GH 20380, when datetime is beyond year 2262, hence outside
        # bound of nanosecond-resolution 64-bit integers.
        try:
            values = lib.maybe_convert_objects(values,
                                               convert_datetime=datetime)
        except OutOfBoundsDatetime:
            pass

    if timedelta and is_object_dtype(values.dtype):
        # Object check to ensure only run if previous did not convert
        values = lib.maybe_convert_objects(values, convert_timedelta=timedelta)

    if numeric and is_object_dtype(values.dtype):
        try:
            converted = lib.maybe_convert_numeric(values, set(),
                                                  coerce_numeric=True)
            # If all NaNs, then do not-alter
            values = converted if not isna(converted).all() else values
            values = values.copy() if copy else values
        except Exception:
            pass

    return values 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:62,代碼來源:cast.py


注:本文中的pandas._libs.lib.maybe_convert_objects方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。