本文整理匯總了Python中pandas._libs.lib.maybe_convert_numeric方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.maybe_convert_numeric方法的具體用法?Python lib.maybe_convert_numeric怎麽用?Python lib.maybe_convert_numeric使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas._libs.lib
的用法示例。
在下文中一共展示了lib.maybe_convert_numeric方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_maybe_convert_numeric_infinities
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_maybe_convert_numeric_infinities(self):
# see gh-13274
infinities = ['inf', 'inF', 'iNf', 'Inf',
'iNF', 'InF', 'INf', 'INF']
na_values = {'', 'NULL', 'nan'}
pos = np.array(['inf'], dtype=np.float64)
neg = np.array(['-inf'], dtype=np.float64)
msg = "Unable to parse string"
for infinity in infinities:
for maybe_int in (True, False):
out = lib.maybe_convert_numeric(
np.array([infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['-' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, neg)
out = lib.maybe_convert_numeric(
np.array([u(infinity)], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['+' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
# too many characters
with pytest.raises(ValueError, match=msg):
lib.maybe_convert_numeric(
np.array(['foo_' + infinity], dtype=object),
na_values, maybe_int)
示例2: test_maybe_convert_numeric_post_floatify_nan
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_maybe_convert_numeric_post_floatify_nan(self, coerce):
# see gh-13314
data = np.array(['1.200', '-999.000', '4.500'], dtype=object)
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
nan_values = {-999, -999.0}
out = lib.maybe_convert_numeric(data, nan_values, coerce)
tm.assert_numpy_array_equal(out, expected)
示例3: test_convert_infs
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_infs(self):
arr = np.array(['inf', 'inf', 'inf'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
arr = np.array(['-inf', '-inf', '-inf'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
示例4: test_scientific_no_exponent
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_scientific_no_exponent(self):
# See PR 12215
arr = np.array(['42E', '2E', '99e', '6e'], dtype='O')
result = lib.maybe_convert_numeric(arr, set(), False, True)
assert np.all(np.isnan(result))
示例5: test_convert_non_hashable
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_non_hashable(self):
# GH13324
# make sure that we are handing non-hashables
arr = np.array([[10.0, 2], 1.0, 'apple'])
result = lib.maybe_convert_numeric(arr, set(), False, True)
tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan]))
示例6: test_convert_numeric_uint64_nan
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_numeric_uint64_nan(self, coerce, arr):
expected = arr.astype(float) if coerce else arr.copy()
result = lib.maybe_convert_numeric(arr, set(),
coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
示例7: test_convert_numeric_uint64_nan_values
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_numeric_uint64_nan_values(self, coerce):
arr = np.array([2**63, 2**63 + 1], dtype=object)
na_values = {2**63}
expected = (np.array([np.nan, 2**63 + 1], dtype=float)
if coerce else arr.copy())
result = lib.maybe_convert_numeric(arr, na_values,
coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
示例8: test_convert_numeric_int64_uint64
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_numeric_int64_uint64(self, case, coerce):
expected = case.astype(float) if coerce else case.copy()
result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
示例9: test_maybe_convert_numeric_infinities
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_maybe_convert_numeric_infinities(self):
# see gh-13274
infinities = ['inf', 'inF', 'iNf', 'Inf',
'iNF', 'InF', 'INf', 'INF']
na_values = set(['', 'NULL', 'nan'])
pos = np.array(['inf'], dtype=np.float64)
neg = np.array(['-inf'], dtype=np.float64)
msg = "Unable to parse string"
for infinity in infinities:
for maybe_int in (True, False):
out = lib.maybe_convert_numeric(
np.array([infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['-' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, neg)
out = lib.maybe_convert_numeric(
np.array([u(infinity)], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
out = lib.maybe_convert_numeric(
np.array(['+' + infinity], dtype=object),
na_values, maybe_int)
tm.assert_numpy_array_equal(out, pos)
# too many characters
with tm.assert_raises_regex(ValueError, msg):
lib.maybe_convert_numeric(
np.array(['foo_' + infinity], dtype=object),
na_values, maybe_int)
示例10: test_maybe_convert_numeric_post_floatify_nan
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_maybe_convert_numeric_post_floatify_nan(self, coerce):
# see gh-13314
data = np.array(['1.200', '-999.000', '4.500'], dtype=object)
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
nan_values = set([-999, -999.0])
out = lib.maybe_convert_numeric(data, nan_values, coerce)
tm.assert_numpy_array_equal(out, expected)
示例11: test_convert_numeric_uint64_nan_values
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_convert_numeric_uint64_nan_values(self, coerce):
arr = np.array([2**63, 2**63 + 1], dtype=object)
na_values = set([2**63])
expected = (np.array([np.nan, 2**63 + 1], dtype=float)
if coerce else arr.copy())
result = lib.maybe_convert_numeric(arr, na_values,
coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
示例12: test_maybe_convert_numeric_post_floatify_nan
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_convert_numeric [as 別名]
def test_maybe_convert_numeric_post_floatify_nan(self):
# see gh-13314
data = np.array(['1.200', '-999.000', '4.500'], dtype=object)
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
nan_values = set([-999, -999.0])
for coerce_type in (True, False):
out = lib.maybe_convert_numeric(data, nan_values, coerce_type)
tm.assert_numpy_array_equal(out, expected)