本文整理匯總了Python中pandas._libs.lib.maybe_booleans_to_slice方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.maybe_booleans_to_slice方法的具體用法?Python lib.maybe_booleans_to_slice怎麽用?Python lib.maybe_booleans_to_slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas._libs.lib
的用法示例。
在下文中一共展示了lib.maybe_booleans_to_slice方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_maybe_booleans_to_slice
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_booleans_to_slice [as 別名]
def test_maybe_booleans_to_slice(self):
arr = np.array([0, 0, 1, 1, 1, 0, 1], dtype=np.uint8)
result = lib.maybe_booleans_to_slice(arr)
assert result.dtype == np.bool_
result = lib.maybe_booleans_to_slice(arr[:0])
assert result == slice(0, 0)
示例2: __getitem__
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_booleans_to_slice [as 別名]
def __getitem__(self, key):
"""
This getitem defers to the underlying array, which by-definition can
only handle list-likes, slices, and integer scalars
"""
is_int = lib.is_integer(key)
if lib.is_scalar(key) and not is_int:
raise IndexError("only integers, slices (`:`), ellipsis (`...`), "
"numpy.newaxis (`None`) and integer or boolean "
"arrays are valid indices")
getitem = self._data.__getitem__
if is_int:
val = getitem(key)
return self._box_func(val)
if com.is_bool_indexer(key):
key = np.asarray(key, dtype=bool)
if key.all():
key = slice(0, None, None)
else:
key = lib.maybe_booleans_to_slice(key.view(np.uint8))
is_period = is_period_dtype(self)
if is_period:
freq = self.freq
else:
freq = None
if isinstance(key, slice):
if self.freq is not None and key.step is not None:
freq = key.step * self.freq
else:
freq = self.freq
elif key is Ellipsis:
# GH#21282 indexing with Ellipsis is similar to a full slice,
# should preserve `freq` attribute
freq = self.freq
result = getitem(key)
if result.ndim > 1:
# To support MPL which performs slicing with 2 dim
# even though it only has 1 dim by definition
if is_period:
return self._simple_new(result, dtype=self.dtype, freq=freq)
return result
return self._simple_new(result, dtype=self.dtype, freq=freq)
示例3: __getitem__
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import maybe_booleans_to_slice [as 別名]
def __getitem__(self, key):
"""
This getitem defers to the underlying array, which by-definition can
only handle list-likes, slices, and integer scalars
"""
is_int = is_integer(key)
if is_scalar(key) and not is_int:
raise IndexError("only integers, slices (`:`), ellipsis (`...`), "
"numpy.newaxis (`None`) and integer or boolean "
"arrays are valid indices")
getitem = self._data.__getitem__
if is_int:
val = getitem(key)
return self._box_func(val)
else:
if com.is_bool_indexer(key):
key = np.asarray(key)
if key.all():
key = slice(0, None, None)
else:
key = lib.maybe_booleans_to_slice(key.view(np.uint8))
attribs = self._get_attributes_dict()
is_period = isinstance(self, ABCPeriodIndex)
if is_period:
freq = self.freq
else:
freq = None
if isinstance(key, slice):
if self.freq is not None and key.step is not None:
freq = key.step * self.freq
else:
freq = self.freq
attribs['freq'] = freq
result = getitem(key)
if result.ndim > 1:
# To support MPL which performs slicing with 2 dim
# even though it only has 1 dim by definition
if is_period:
return self._simple_new(result, **attribs)
return result
return self._simple_new(result, **attribs)