當前位置: 首頁>>代碼示例>>Python>>正文


Python lib.infer_dtype方法代碼示例

本文整理匯總了Python中pandas._libs.lib.infer_dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.infer_dtype方法的具體用法?Python lib.infer_dtype怎麽用?Python lib.infer_dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas._libs.lib的用法示例。


在下文中一共展示了lib.infer_dtype方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convert_1d

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _convert_1d(values, units, axis):
        if not hasattr(axis, 'freq'):
            raise TypeError('Axis must have `freq` set to convert to Periods')
        valid_types = (compat.string_types, datetime,
                       Period, pydt.date, pydt.time, np.datetime64)
        if (isinstance(values, valid_types) or is_integer(values) or
                is_float(values)):
            return get_datevalue(values, axis.freq)
        elif isinstance(values, PeriodIndex):
            return values.asfreq(axis.freq)._ndarray_values
        elif isinstance(values, Index):
            return values.map(lambda x: get_datevalue(x, axis.freq))
        elif lib.infer_dtype(values, skipna=False) == 'period':
            # https://github.com/pandas-dev/pandas/issues/24304
            # convert ndarray[period] -> PeriodIndex
            return PeriodIndex(values, freq=axis.freq)._ndarray_values
        elif isinstance(values, (list, tuple, np.ndarray, Index)):
            return [get_datevalue(x, axis.freq) for x in values]
        return values 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:_converter.py

示例2: test_bools

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_bools(self):
        arr = np.array([True, False, True, True, True], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'boolean'

        arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'boolean'

        arr = np.array([True, False, True, 'foo'], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'mixed'

        arr = np.array([True, False, True], dtype=bool)
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'boolean'

        arr = np.array([True, np.nan, False], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'boolean'

        result = lib.infer_dtype(arr, skipna=False)
        assert result == 'mixed' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_inference.py

示例3: test_floats

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_floats(self):
        arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'floating'

        arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
                       dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'mixed-integer'

        arr = np.array([1, 2, 3, 4, 5], dtype='f4')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'floating'

        arr = np.array([1, 2, 3, 4, 5], dtype='f8')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'floating' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_inference.py

示例4: test_decimals

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_decimals(self):
        # GH15690
        arr = np.array([Decimal(1), Decimal(2), Decimal(3)])
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'decimal'

        arr = np.array([1.0, 2.0, Decimal(3)])
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'mixed'

        arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)])
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'decimal'

        arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'decimal' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_inference.py

示例5: test_categorical

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_categorical(self):

        # GH 8974
        from pandas import Categorical, Series
        arr = Categorical(list('abc'))
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'categorical'

        result = lib.infer_dtype(Series(arr), skipna=True)
        assert result == 'categorical'

        arr = Categorical(list('abc'), categories=['cegfab'], ordered=True)
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'categorical'

        result = lib.infer_dtype(Series(arr), skipna=True)
        assert result == 'categorical' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_inference.py

示例6: _get_data_algo

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _get_data_algo(values, func_map):

    if is_categorical_dtype(values):
        values = values._values_for_rank()

    values, dtype, ndtype = _ensure_data(values)
    if ndtype == 'object':

        # it's cheaper to use a String Hash Table than Object; we infer
        # including nulls because that is the only difference between
        # StringHashTable and ObjectHashtable
        if lib.infer_dtype(values, skipna=False) in ['string']:
            ndtype = 'string'

    f = func_map.get(ndtype, func_map['object'])

    return f, values


# --------------- #
# top-level algos #
# --------------- # 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:algorithms.py

示例7: _infer_fill_value

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _infer_fill_value(val):
    """
    infer the fill value for the nan/NaT from the provided
    scalar/ndarray/list-like if we are a NaT, return the correct dtyped
    element to provide proper block construction
    """

    if not is_list_like(val):
        val = [val]
    val = np.array(val, copy=False)
    if is_datetimelike(val):
        return np.array('NaT', dtype=val.dtype)
    elif is_object_dtype(val.dtype):
        dtype = lib.infer_dtype(ensure_object(val), skipna=False)
        if dtype in ['datetime', 'datetime64']:
            return np.array('NaT', dtype=_NS_DTYPE)
        elif dtype in ['timedelta', 'timedelta64']:
            return np.array('NaT', dtype=_TD_DTYPE)
    return np.nan 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:missing.py

示例8: test_bools

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_bools(self):
        arr = np.array([True, False, True, True, True], dtype='O')
        result = lib.infer_dtype(arr)
        assert result == 'boolean'

        arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
        result = lib.infer_dtype(arr)
        assert result == 'boolean'

        arr = np.array([True, False, True, 'foo'], dtype='O')
        result = lib.infer_dtype(arr)
        assert result == 'mixed'

        arr = np.array([True, False, True], dtype=bool)
        result = lib.infer_dtype(arr)
        assert result == 'boolean'

        arr = np.array([True, np.nan, False], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'boolean' 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_inference.py

示例9: test_floats

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_floats(self):
        arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
        result = lib.infer_dtype(arr)
        assert result == 'floating'

        arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
                       dtype='O')
        result = lib.infer_dtype(arr)
        assert result == 'mixed-integer'

        arr = np.array([1, 2, 3, 4, 5], dtype='f4')
        result = lib.infer_dtype(arr)
        assert result == 'floating'

        arr = np.array([1, 2, 3, 4, 5], dtype='f8')
        result = lib.infer_dtype(arr)
        assert result == 'floating' 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:test_inference.py

示例10: test_categorical

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_categorical(self):

        # GH 8974
        from pandas import Categorical, Series
        arr = Categorical(list('abc'))
        result = lib.infer_dtype(arr)
        assert result == 'categorical'

        result = lib.infer_dtype(Series(arr))
        assert result == 'categorical'

        arr = Categorical(list('abc'), categories=['cegfab'], ordered=True)
        result = lib.infer_dtype(arr)
        assert result == 'categorical'

        result = lib.infer_dtype(Series(arr))
        assert result == 'categorical' 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:test_inference.py

示例11: _infer_fill_value

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _infer_fill_value(val):
    """
    infer the fill value for the nan/NaT from the provided
    scalar/ndarray/list-like if we are a NaT, return the correct dtyped
    element to provide proper block construction
    """

    if not is_list_like(val):
        val = [val]
    val = np.array(val, copy=False)
    if is_datetimelike(val):
        return np.array('NaT', dtype=val.dtype)
    elif is_object_dtype(val.dtype):
        dtype = lib.infer_dtype(_ensure_object(val))
        if dtype in ['datetime', 'datetime64']:
            return np.array('NaT', dtype=_NS_DTYPE)
        elif dtype in ['timedelta', 'timedelta64']:
            return np.array('NaT', dtype=_TD_DTYPE)
    return np.nan 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:missing.py

示例12: test_infer_dtype_bytes

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_infer_dtype_bytes(self):
        compare = 'string' if PY2 else 'bytes'

        # string array of bytes
        arr = np.array(list('abc'), dtype='S1')
        assert lib.infer_dtype(arr, skipna=True) == compare

        # object array of bytes
        arr = arr.astype(object)
        assert lib.infer_dtype(arr, skipna=True) == compare

        # object array of bytes with missing values
        assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:15,代碼來源:test_inference.py

示例13: test_inferred_dtype_fixture

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype):
        # see pandas/conftest.py
        inferred_dtype, values = any_skipna_inferred_dtype

        # make sure the inferred dtype of the fixture is as requested
        assert inferred_dtype == lib.infer_dtype(values, skipna=True) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:8,代碼來源:test_inference.py

示例14: test_length_zero

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_length_zero(self, skipna):
        result = lib.infer_dtype(np.array([], dtype='i4'), skipna=skipna)
        assert result == 'integer'

        result = lib.infer_dtype([], skipna=skipna)
        assert result == 'empty'

        # GH 18004
        arr = np.array([np.array([], dtype=object),
                        np.array([], dtype=object)])
        result = lib.infer_dtype(arr, skipna=skipna)
        assert result == 'empty' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_inference.py

示例15: test_integers

# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_integers(self):
        arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'integer'

        arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'mixed-integer'

        arr = np.array([1, 2, 3, 4, 5], dtype='i4')
        result = lib.infer_dtype(arr, skipna=True)
        assert result == 'integer' 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_inference.py


注:本文中的pandas._libs.lib.infer_dtype方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。