本文整理匯總了Python中pandas._libs.lib.infer_dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python lib.infer_dtype方法的具體用法?Python lib.infer_dtype怎麽用?Python lib.infer_dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas._libs.lib
的用法示例。
在下文中一共展示了lib.infer_dtype方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _convert_1d
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _convert_1d(values, units, axis):
if not hasattr(axis, 'freq'):
raise TypeError('Axis must have `freq` set to convert to Periods')
valid_types = (compat.string_types, datetime,
Period, pydt.date, pydt.time, np.datetime64)
if (isinstance(values, valid_types) or is_integer(values) or
is_float(values)):
return get_datevalue(values, axis.freq)
elif isinstance(values, PeriodIndex):
return values.asfreq(axis.freq)._ndarray_values
elif isinstance(values, Index):
return values.map(lambda x: get_datevalue(x, axis.freq))
elif lib.infer_dtype(values, skipna=False) == 'period':
# https://github.com/pandas-dev/pandas/issues/24304
# convert ndarray[period] -> PeriodIndex
return PeriodIndex(values, freq=axis.freq)._ndarray_values
elif isinstance(values, (list, tuple, np.ndarray, Index)):
return [get_datevalue(x, axis.freq) for x in values]
return values
示例2: test_bools
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([True, False, True, 'foo'], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'mixed'
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
arr = np.array([True, np.nan, False], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
result = lib.infer_dtype(arr, skipna=False)
assert result == 'mixed'
示例3: test_floats
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_floats(self):
arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'floating'
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'mixed-integer'
arr = np.array([1, 2, 3, 4, 5], dtype='f4')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'floating'
arr = np.array([1, 2, 3, 4, 5], dtype='f8')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'floating'
示例4: test_decimals
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_decimals(self):
# GH15690
arr = np.array([Decimal(1), Decimal(2), Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == 'decimal'
arr = np.array([1.0, 2.0, Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == 'mixed'
arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == 'decimal'
arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'decimal'
示例5: test_categorical
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_categorical(self):
# GH 8974
from pandas import Categorical, Series
arr = Categorical(list('abc'))
result = lib.infer_dtype(arr, skipna=True)
assert result == 'categorical'
result = lib.infer_dtype(Series(arr), skipna=True)
assert result == 'categorical'
arr = Categorical(list('abc'), categories=['cegfab'], ordered=True)
result = lib.infer_dtype(arr, skipna=True)
assert result == 'categorical'
result = lib.infer_dtype(Series(arr), skipna=True)
assert result == 'categorical'
示例6: _get_data_algo
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _get_data_algo(values, func_map):
if is_categorical_dtype(values):
values = values._values_for_rank()
values, dtype, ndtype = _ensure_data(values)
if ndtype == 'object':
# it's cheaper to use a String Hash Table than Object; we infer
# including nulls because that is the only difference between
# StringHashTable and ObjectHashtable
if lib.infer_dtype(values, skipna=False) in ['string']:
ndtype = 'string'
f = func_map.get(ndtype, func_map['object'])
return f, values
# --------------- #
# top-level algos #
# --------------- #
示例7: _infer_fill_value
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _infer_fill_value(val):
"""
infer the fill value for the nan/NaT from the provided
scalar/ndarray/list-like if we are a NaT, return the correct dtyped
element to provide proper block construction
"""
if not is_list_like(val):
val = [val]
val = np.array(val, copy=False)
if is_datetimelike(val):
return np.array('NaT', dtype=val.dtype)
elif is_object_dtype(val.dtype):
dtype = lib.infer_dtype(ensure_object(val), skipna=False)
if dtype in ['datetime', 'datetime64']:
return np.array('NaT', dtype=_NS_DTYPE)
elif dtype in ['timedelta', 'timedelta64']:
return np.array('NaT', dtype=_TD_DTYPE)
return np.nan
示例8: test_bools
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([np.bool_(True), np.bool_(False)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([True, False, True, 'foo'], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'mixed'
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr)
assert result == 'boolean'
arr = np.array([True, np.nan, False], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'boolean'
示例9: test_floats
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_floats(self):
arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O')
result = lib.infer_dtype(arr)
assert result == 'floating'
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'],
dtype='O')
result = lib.infer_dtype(arr)
assert result == 'mixed-integer'
arr = np.array([1, 2, 3, 4, 5], dtype='f4')
result = lib.infer_dtype(arr)
assert result == 'floating'
arr = np.array([1, 2, 3, 4, 5], dtype='f8')
result = lib.infer_dtype(arr)
assert result == 'floating'
示例10: test_categorical
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_categorical(self):
# GH 8974
from pandas import Categorical, Series
arr = Categorical(list('abc'))
result = lib.infer_dtype(arr)
assert result == 'categorical'
result = lib.infer_dtype(Series(arr))
assert result == 'categorical'
arr = Categorical(list('abc'), categories=['cegfab'], ordered=True)
result = lib.infer_dtype(arr)
assert result == 'categorical'
result = lib.infer_dtype(Series(arr))
assert result == 'categorical'
示例11: _infer_fill_value
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def _infer_fill_value(val):
"""
infer the fill value for the nan/NaT from the provided
scalar/ndarray/list-like if we are a NaT, return the correct dtyped
element to provide proper block construction
"""
if not is_list_like(val):
val = [val]
val = np.array(val, copy=False)
if is_datetimelike(val):
return np.array('NaT', dtype=val.dtype)
elif is_object_dtype(val.dtype):
dtype = lib.infer_dtype(_ensure_object(val))
if dtype in ['datetime', 'datetime64']:
return np.array('NaT', dtype=_NS_DTYPE)
elif dtype in ['timedelta', 'timedelta64']:
return np.array('NaT', dtype=_TD_DTYPE)
return np.nan
示例12: test_infer_dtype_bytes
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_infer_dtype_bytes(self):
compare = 'string' if PY2 else 'bytes'
# string array of bytes
arr = np.array(list('abc'), dtype='S1')
assert lib.infer_dtype(arr, skipna=True) == compare
# object array of bytes
arr = arr.astype(object)
assert lib.infer_dtype(arr, skipna=True) == compare
# object array of bytes with missing values
assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare
示例13: test_inferred_dtype_fixture
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype):
# see pandas/conftest.py
inferred_dtype, values = any_skipna_inferred_dtype
# make sure the inferred dtype of the fixture is as requested
assert inferred_dtype == lib.infer_dtype(values, skipna=True)
示例14: test_length_zero
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_length_zero(self, skipna):
result = lib.infer_dtype(np.array([], dtype='i4'), skipna=skipna)
assert result == 'integer'
result = lib.infer_dtype([], skipna=skipna)
assert result == 'empty'
# GH 18004
arr = np.array([np.array([], dtype=object),
np.array([], dtype=object)])
result = lib.infer_dtype(arr, skipna=skipna)
assert result == 'empty'
示例15: test_integers
# 需要導入模塊: from pandas._libs import lib [as 別名]
# 或者: from pandas._libs.lib import infer_dtype [as 別名]
def test_integers(self):
arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'integer'
arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'mixed-integer'
arr = np.array([1, 2, 3, 4, 5], dtype='i4')
result = lib.infer_dtype(arr, skipna=True)
assert result == 'integer'