本文整理匯總了Python中pandas.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.__version__方法的具體用法?Python pandas.__version__怎麽用?Python pandas.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.__version__方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write_legacy_pickles
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def write_legacy_pickles(output_dir):
# make sure we are < 0.13 compat (in py3)
try:
from pandas.compat import zip, cPickle as pickle # noqa
except ImportError:
import pickle
version = pandas.__version__
print("This script generates a storage file for the current arch, system, "
"and python version")
print(" pandas version: {0}".format(version))
print(" output dir : {0}".format(output_dir))
print(" storage format: pickle")
pth = '{0}.pickle'.format(platform_name())
fh = open(os.path.join(output_dir, pth), 'wb')
pickle.dump(create_pickle_data(), fh, pickle.HIGHEST_PROTOCOL)
fh.close()
print("created pickle file: %s" % pth)
示例2: write_legacy_pickles
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def write_legacy_pickles(output_dir):
# make sure we are < 0.13 compat (in py3)
try:
from pandas.compat import zip, cPickle as pickle # noqa
except:
import pickle
version = pandas.__version__
print("This script generates a storage file for the current arch, system, "
"and python version")
print(" pandas version: {0}".format(version))
print(" output dir : {0}".format(output_dir))
print(" storage format: pickle")
pth = '{0}.pickle'.format(platform_name())
fh = open(os.path.join(output_dir, pth), 'wb')
pickle.dump(create_pickle_data(), fh, pickle.HIGHEST_PROTOCOL)
fh.close()
print("created pickle file: %s" % pth)
示例3: test_open_args
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_open_args(self):
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
# create an in memory store
store = HDFStore(path,mode='a',driver='H5FD_CORE',driver_core_backing_store=0)
store['df'] = df
store.append('df2',df)
tm.assert_frame_equal(store['df'],df)
tm.assert_frame_equal(store['df2'],df)
store.close()
# only supported on pytable >= 3.0.0
if LooseVersion(tables.__version__) >= '3.0.0':
# the file should not have actually been written
self.assert_(os.path.exists(path) is False)
示例4: test_encoding
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_encoding(self):
if LooseVersion(tables.__version__) < '3.0.0':
raise nose.SkipTest('tables version does not support proper encoding')
if sys.byteorder != 'little':
raise nose.SkipTest('system byteorder is not little')
with ensure_clean_store(self.path) as store:
df = DataFrame(dict(A='foo',B='bar'),index=range(5))
df.loc[2,'A'] = np.nan
df.loc[3,'B'] = np.nan
_maybe_remove(store, 'df')
store.append('df', df, encoding='ascii')
tm.assert_frame_equal(store['df'], df)
expected = df.reindex(columns=['A'])
result = store.select('df',Term('columns=A',encoding='ascii'))
tm.assert_frame_equal(result,expected)
示例5: test_legacy_table_write
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_legacy_table_write(self):
raise nose.SkipTest("skipping for now")
store = HDFStore(tm.get_data_path('legacy_hdf/legacy_table_%s.h5' % pandas.__version__), 'a')
df = tm.makeDataFrame()
wp = tm.makePanel()
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo', 'bar'])
df = DataFrame(np.random.randn(10, 3), index=index,
columns=['A', 'B', 'C'])
store.append('mi', df)
df = DataFrame(dict(A = 'foo', B = 'bar'),index=lrange(10))
store.append('df', df, data_columns = ['B'], min_itemsize={'A' : 200 })
store.append('wp', wp)
store.close()
示例6: require_minimum_pandas_version
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def require_minimum_pandas_version():
""" Raise ImportError if minimum version of Pandas is not installed
"""
# TODO(HyukjinKwon): Relocate and deduplicate the version specification.
minimum_pandas_version = "0.19.2"
from distutils.version import LooseVersion
try:
import pandas
have_pandas = True
except ImportError:
have_pandas = False
if not have_pandas:
raise ImportError("Pandas >= %s must be installed; however, "
"it was not found." % minimum_pandas_version)
if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version):
raise ImportError("Pandas >= %s must be installed; however, "
"your version was %s." % (minimum_pandas_version, pandas.__version__))
示例7: require_minimum_pyarrow_version
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def require_minimum_pyarrow_version():
""" Raise ImportError if minimum version of pyarrow is not installed
"""
# TODO(HyukjinKwon): Relocate and deduplicate the version specification.
minimum_pyarrow_version = "0.8.0"
from distutils.version import LooseVersion
try:
import pyarrow
have_arrow = True
except ImportError:
have_arrow = False
if not have_arrow:
raise ImportError("PyArrow >= %s must be installed; however, "
"it was not found." % minimum_pyarrow_version)
if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version):
raise ImportError("PyArrow >= %s must be installed; however, "
"your version was %s." % (minimum_pyarrow_version, pyarrow.__version__))
示例8: _symmetric_difference
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def _symmetric_difference(idxs):
""" Returns the chained symmetrical difference of the indexes given.
Parameters
----------
idxs : list
List of pandas.Index objects.
Returns
-------
idx : pandas.Index
The result of the chained symmetrical difference of the indexes
given.
"""
idx = idxs[0]
for idx_part in idxs[1:]:
if pd.__version__ == '0.19.2':
idx = idx.symmetric_difference(idx_part)
else:
idx = idx.sym_diff(idx_part)
return idx
示例9: _make_bqstorage_client
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def _make_bqstorage_client(use_bqstorage_api, credentials):
if not use_bqstorage_api:
return None
if bigquery_storage_v1beta1 is None:
raise ImportError(
"Install the google-cloud-bigquery-storage and fastavro/pyarrow "
"packages to use the BigQuery Storage API."
)
import google.api_core.gapic_v1.client_info
import pandas
client_info = google.api_core.gapic_v1.client_info.ClientInfo(
user_agent="pandas-{}".format(pandas.__version__)
)
return bigquery_storage_v1beta1.BigQueryStorageClient(
credentials=credentials, client_info=client_info
)
示例10: test_rfloordiv
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_rfloordiv(self):
pdf = pd.DataFrame(
{"angles": [0, 3, 4], "degrees": [360, 180, 360]},
index=["circle", "triangle", "rectangle"],
columns=["angles", "degrees"],
)
kdf = ks.from_pandas(pdf)
if LooseVersion(pd.__version__) < LooseVersion("1.0.0") and LooseVersion(
pd.__version__
) >= LooseVersion("0.24.0"):
expected_result = pd.DataFrame(
{"angles": [np.inf, 3.0, 2.0], "degrees": [0.0, 0.0, 0.0]},
index=["circle", "triangle", "rectangle"],
columns=["angles", "degrees"],
)
else:
expected_result = pdf.rfloordiv(10)
self.assert_eq(kdf.rfloordiv(10), expected_result)
示例11: test_get_dummies_dtype
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_get_dummies_dtype(self):
pdf = pd.DataFrame(
{
# "A": pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c']),
"A": ["a", "b", "a"],
"B": [0, 0, 1],
}
)
kdf = ks.from_pandas(pdf)
if LooseVersion("0.23.0") <= LooseVersion(pd.__version__):
exp = pd.get_dummies(pdf, dtype="float64")
else:
exp = pd.get_dummies(pdf)
exp = exp.astype({"A_a": "float64", "A_b": "float64"})
res = ks.get_dummies(kdf, dtype="float64")
self.assert_eq(res, exp, almost=True)
示例12: test_repeat
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_repeat(self):
pser = pd.Series(["a", "b", "c"], name="0", index=np.random.rand(3))
kser = ks.from_pandas(pser)
self.assert_eq(kser.repeat(3).sort_index(), pser.repeat(3).sort_index())
self.assert_eq(kser.repeat(0).sort_index(), pser.repeat(0).sort_index())
self.assertRaises(ValueError, lambda: kser.repeat(-1))
self.assertRaises(ValueError, lambda: kser.repeat("abc"))
pdf = pd.DataFrame({"a": ["a", "b", "c"], "rep": [10, 20, 30]}, index=np.random.rand(3))
kdf = ks.from_pandas(pdf)
if LooseVersion(pyspark.__version__) < LooseVersion("2.4"):
self.assertRaises(ValueError, lambda: kdf.a.repeat(kdf.rep))
else:
self.assert_eq(kdf.a.repeat(kdf.rep).sort_index(), pdf.a.repeat(pdf.rep).sort_index())
示例13: platform_name
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def platform_name():
return '_'.join([str(pandas.__version__), str(pl.machine()),
str(pl.system().lower()), str(pl.python_version())])
示例14: write_legacy_msgpack
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def write_legacy_msgpack(output_dir, compress):
version = pandas.__version__
print("This script generates a storage file for the current arch, "
"system, and python version")
print(" pandas version: {0}".format(version))
print(" output dir : {0}".format(output_dir))
print(" storage format: msgpack")
pth = '{0}.msgpack'.format(platform_name())
to_msgpack(os.path.join(output_dir, pth), create_msgpack_data(),
compress=compress)
print("created msgpack file: %s" % pth)
示例15: test_dc_import
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import __version__ [as 別名]
def test_dc_import(self):
import deepchem
print(deepchem.__version__)