本文整理匯總了Python中pandas.Timedelta方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.Timedelta方法的具體用法?Python pandas.Timedelta怎麽用?Python pandas.Timedelta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.Timedelta方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_min_max
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_min_max(self):
arr = TimedeltaArray._from_sequence([
'3H', '3H', 'NaT', '2H', '5H', '4H',
])
result = arr.min()
expected = pd.Timedelta('2H')
assert result == expected
result = arr.max()
expected = pd.Timedelta('5H')
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
示例2: test_take_fill_valid
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_take_fill_valid(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
td1 = pd.Timedelta(days=1)
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
assert result[0] == td1
now = pd.Timestamp.now()
with pytest.raises(ValueError):
# fill_value Timestamp invalid
arr.take([0, 1], allow_fill=True, fill_value=now)
with pytest.raises(ValueError):
# fill_value Period invalid
arr.take([0, 1], allow_fill=True, fill_value=now.to_period('D'))
示例3: test_tdi_round
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_tdi_round(self):
td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min')
elt = td[1]
expected_rng = TimedeltaIndex([Timedelta('16801 days 00:00:00'),
Timedelta('16801 days 00:00:00'),
Timedelta('16801 days 01:00:00'),
Timedelta('16801 days 02:00:00'),
Timedelta('16801 days 02:00:00')])
expected_elt = expected_rng[1]
tm.assert_index_equal(td.round(freq='H'), expected_rng)
assert elt.round(freq='H') == expected_elt
msg = pd._libs.tslibs.frequencies.INVALID_FREQ_ERR_MSG
with pytest.raises(ValueError, match=msg):
td.round(freq='foo')
with pytest.raises(ValueError, match=msg):
elt.round(freq='foo')
msg = "<MonthEnd> is a non-fixed frequency"
with pytest.raises(ValueError, match=msg):
td.round(freq='M')
with pytest.raises(ValueError, match=msg):
elt.round(freq='M')
示例4: test_get_indexer
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_get_indexer(self):
idx = pd.to_timedelta(['0 days', '1 days', '2 days'])
tm.assert_numpy_array_equal(idx.get_indexer(idx),
np.array([0, 1, 2], dtype=np.intp))
target = pd.to_timedelta(['-1 hour', '12 hours', '1 day 1 hour'])
tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'),
np.array([-1, 0, 1], dtype=np.intp))
tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'),
np.array([0, 1, 2], dtype=np.intp))
tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'),
np.array([0, 1, 1], dtype=np.intp))
res = idx.get_indexer(target, 'nearest',
tolerance=Timedelta('1 hour'))
tm.assert_numpy_array_equal(res, np.array([0, -1, 1], dtype=np.intp))
示例5: test_astype
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_astype(self):
# GH 13149, GH 13209
idx = TimedeltaIndex([1e14, 'NaT', NaT, np.NaN])
result = idx.astype(object)
expected = Index([Timedelta('1 days 03:46:40')] + [NaT] * 3,
dtype=object)
tm.assert_index_equal(result, expected)
result = idx.astype(int)
expected = Int64Index([100000000000000] + [-9223372036854775808] * 3,
dtype=np.int64)
tm.assert_index_equal(result, expected)
result = idx.astype(str)
expected = Index(str(x) for x in idx)
tm.assert_index_equal(result, expected)
rng = timedelta_range('1 days', periods=10)
result = rng.astype('i8')
tm.assert_index_equal(result, Index(rng.asi8))
tm.assert_numpy_array_equal(rng.asi8, result.values)
示例6: test_slice_with_negative_step
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_slice_with_negative_step(self):
ts = Series(np.arange(20), timedelta_range('0', periods=20, freq='H'))
SLC = pd.IndexSlice
def assert_slices_equivalent(l_slc, i_slc):
assert_series_equal(ts[l_slc], ts.iloc[i_slc])
assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_slices_equivalent(SLC[Timedelta(hours=7)::-1], SLC[7::-1])
assert_slices_equivalent(SLC['7 hours'::-1], SLC[7::-1])
assert_slices_equivalent(SLC[:Timedelta(hours=7):-1], SLC[:6:-1])
assert_slices_equivalent(SLC[:'7 hours':-1], SLC[:6:-1])
assert_slices_equivalent(SLC['15 hours':'7 hours':-1], SLC[15:6:-1])
assert_slices_equivalent(SLC[Timedelta(hours=15):Timedelta(hours=7):-
1], SLC[15:6:-1])
assert_slices_equivalent(SLC['15 hours':Timedelta(hours=7):-1],
SLC[15:6:-1])
assert_slices_equivalent(SLC[Timedelta(hours=15):'7 hours':-1],
SLC[15:6:-1])
assert_slices_equivalent(SLC['7 hours':'15 hours':-1], SLC[:0])
示例7: test_constructor_from_index_dtlike
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_constructor_from_index_dtlike(self, cast_as_obj, index):
if cast_as_obj:
result = pd.Index(index.astype(object))
else:
result = pd.Index(index)
tm.assert_index_equal(result, index)
if isinstance(index, pd.DatetimeIndex):
assert result.tz == index.tz
if cast_as_obj:
# GH#23524 check that Index(dti, dtype=object) does not
# incorrectly raise ValueError, and that nanoseconds are not
# dropped
index += pd.Timedelta(nanoseconds=50)
result = pd.Index(index, dtype=object)
assert result.dtype == np.object_
assert list(result) == list(index)
示例8: test_get_loc_datetimelike_overlapping
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_get_loc_datetimelike_overlapping(self, arrays):
# GH 20636
# overlapping = IntervalTree method with i8 conversion
index = IntervalIndex.from_arrays(*arrays)
value = index[0].mid + Timedelta('12 hours')
result = np.sort(index.get_loc(value))
expected = np.array([0, 1], dtype='intp')
assert tm.assert_numpy_array_equal(result, expected)
interval = Interval(index[0].left, index[1].right)
result = np.sort(index.get_loc(interval))
expected = np.array([0, 1, 2], dtype='intp')
assert tm.assert_numpy_array_equal(result, expected)
# To be removed, replaced by test_interval_new.py (see #16316, #16386)
示例9: test_tolerance_tz
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_tolerance_tz(self):
# GH 14844
left = pd.DataFrame(
{'date': pd.date_range(start=pd.to_datetime('2016-01-02'),
freq='D', periods=5,
tz=pytz.timezone('UTC')),
'value1': np.arange(5)})
right = pd.DataFrame(
{'date': pd.date_range(start=pd.to_datetime('2016-01-01'),
freq='D', periods=5,
tz=pytz.timezone('UTC')),
'value2': list("ABCDE")})
result = pd.merge_asof(left, right, on='date',
tolerance=pd.Timedelta('1 day'))
expected = pd.DataFrame(
{'date': pd.date_range(start=pd.to_datetime('2016-01-02'),
freq='D', periods=5,
tz=pytz.timezone('UTC')),
'value1': np.arange(5),
'value2': list("BCDEE")})
assert_frame_equal(result, expected)
示例10: test_tick_division
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_tick_division(cls):
off = cls(10)
assert off / cls(5) == 2
assert off / 2 == cls(5)
assert off / 2.0 == cls(5)
assert off / off.delta == 1
assert off / off.delta.to_timedelta64() == 1
assert off / Nano(1) == off.delta / Nano(1).delta
if cls is not Nano:
# A case where we end up with a smaller class
result = off / 1000
assert isinstance(result, offsets.Tick)
assert not isinstance(result, cls)
assert result.delta == off.delta / 1000
if cls._inc < Timedelta(seconds=1):
# Case where we end up with a bigger class
result = off / .001
assert isinstance(result, offsets.Tick)
assert not isinstance(result, cls)
assert result.delta == off.delta / .001
示例11: test_compare_ticks_to_strs
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_compare_ticks_to_strs(cls):
# GH#23524
off = cls(19)
# These tests should work with any strings, but we particularly are
# interested in "infer" as that comparison is convenient to make in
# Datetime/Timedelta Array/Index constructors
assert not off == "infer"
assert not "foo" == off
for left, right in [("infer", off), (off, "infer")]:
with pytest.raises(TypeError):
left < right
with pytest.raises(TypeError):
left <= right
with pytest.raises(TypeError):
left > right
with pytest.raises(TypeError):
left >= right
示例12: test_insert_index_timedelta64
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_insert_index_timedelta64(self):
obj = pd.TimedeltaIndex(['1 day', '2 day', '3 day', '4 day'])
assert obj.dtype == 'timedelta64[ns]'
# timedelta64 + timedelta64 => timedelta64
exp = pd.TimedeltaIndex(['1 day', '10 day', '2 day', '3 day', '4 day'])
self._assert_insert_conversion(obj, pd.Timedelta('10 day'),
exp, 'timedelta64[ns]')
# ToDo: must coerce to object
msg = "cannot insert TimedeltaIndex with incompatible label"
with pytest.raises(TypeError, match=msg):
obj.insert(1, pd.Timestamp('2012-01-01'))
# ToDo: must coerce to object
msg = "cannot insert TimedeltaIndex with incompatible label"
with pytest.raises(TypeError, match=msg):
obj.insert(1, 1)
示例13: test_timedelta_assignment
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_timedelta_assignment():
# GH 8209
s = Series([])
s.loc['B'] = timedelta(1)
tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B']))
s = s.reindex(s.index.insert(0, 'A'))
tm.assert_series_equal(s, Series(
[np.nan, Timedelta('1 days')], index=['A', 'B']))
result = s.fillna(timedelta(1))
expected = Series(Timedelta('1 days'), index=['A', 'B'])
tm.assert_series_equal(result, expected)
s.loc['A'] = timedelta(1)
tm.assert_series_equal(s, expected)
# GH 14155
s = Series(10 * [np.timedelta64(10, 'm')])
s.loc[[1, 2, 3]] = np.timedelta64(20, 'm')
expected = pd.Series(10 * [np.timedelta64(10, 'm')])
expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm'))
tm.assert_series_equal(s, expected)
示例14: test_to_csv_from_csv4
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_to_csv_from_csv4(self):
with ensure_clean('__tmp_to_csv_from_csv4__') as path:
# GH 10833 (TimedeltaIndex formatting)
dt = pd.Timedelta(seconds=1)
df = pd.DataFrame({'dt_data': [i * dt for i in range(3)]},
index=pd.Index([i * dt for i in range(3)],
name='dt_index'))
df.to_csv(path)
result = pd.read_csv(path, index_col='dt_index')
result.index = pd.to_timedelta(result.index)
# TODO: remove renaming when GH 10875 is solved
result.index = result.index.rename('dt_index')
result['dt_data'] = pd.to_timedelta(result['dt_data'])
assert_frame_equal(df, result, check_index_type=True)
示例15: test_isin_empty_datetimelike
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Timedelta [as 別名]
def test_isin_empty_datetimelike(self):
# GH 15473
df1_ts = DataFrame({'date':
pd.to_datetime(['2014-01-01', '2014-01-02'])})
df1_td = DataFrame({'date':
[pd.Timedelta(1, 's'), pd.Timedelta(2, 's')]})
df2 = DataFrame({'date': []})
df3 = DataFrame()
expected = DataFrame({'date': [False, False]})
result = df1_ts.isin(df2)
tm.assert_frame_equal(result, expected)
result = df1_ts.isin(df3)
tm.assert_frame_equal(result, expected)
result = df1_td.isin(df2)
tm.assert_frame_equal(result, expected)
result = df1_td.isin(df3)
tm.assert_frame_equal(result, expected)
# Rounding