本文整理匯總了Python中pandas.SparseDataFrame方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.SparseDataFrame方法的具體用法?Python pandas.SparseDataFrame怎麽用?Python pandas.SparseDataFrame使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.SparseDataFrame方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_concat_sparse_dense_rows
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_concat_sparse_dense_rows(self, fill_value, sparse_idx, dense_idx):
frames = [self.dense1, self.dense2]
sparse_frame = [frames[dense_idx],
frames[sparse_idx].to_sparse(fill_value=fill_value)]
dense_frame = [frames[dense_idx], frames[sparse_idx]]
# This will try both directions sparse + dense and dense + sparse
for _ in range(2):
res = pd.concat(sparse_frame)
exp = pd.concat(dense_frame)
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), exp)
sparse_frame = sparse_frame[::-1]
dense_frame = dense_frame[::-1]
示例2: test_to_frame
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_to_frame(self):
# GH 9850
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)
s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
default_fill_value=0)
tm.assert_sp_frame_equal(s.to_frame(), exp)
exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp)
示例3: test_constructor_ndarray
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_constructor_ndarray(self, float_frame):
# no index or columns
sp = SparseDataFrame(float_frame.values)
# 1d
sp = SparseDataFrame(float_frame['A'].values, index=float_frame.index,
columns=['A'])
tm.assert_sp_frame_equal(sp, float_frame.reindex(columns=['A']))
# raise on level argument
pytest.raises(TypeError, float_frame.reindex, columns=['A'],
level=1)
# wrong length index / columns
with pytest.raises(ValueError, match="^Index length"):
SparseDataFrame(float_frame.values, index=float_frame.index[:-1])
with pytest.raises(ValueError, match="^Column length"):
SparseDataFrame(float_frame.values,
columns=float_frame.columns[:-1])
# GH 9272
示例4: test_constructor_from_series
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_constructor_from_series(self):
# GH 2873
x = Series(np.random.randn(10000), name='a')
x = x.to_sparse(fill_value=0)
assert isinstance(x, SparseSeries)
df = SparseDataFrame(x)
assert isinstance(df, SparseDataFrame)
x = Series(np.random.randn(10000), name='a')
y = Series(np.random.randn(10000), name='b')
x2 = x.astype(float)
x2.loc[:9998] = np.NaN
# TODO: x_sparse is unused...fix
x_sparse = x2.to_sparse(fill_value=np.NaN) # noqa
# Currently fails too with weird ufunc error
# df1 = SparseDataFrame([x_sparse, y])
y.loc[:9998] = 0
# TODO: y_sparse is unsused...fix
y_sparse = y.to_sparse(fill_value=0) # noqa
# without sparse value raises error
# df2 = SparseDataFrame([x2_sparse, y])
示例5: test_dense_to_sparse
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_dense_to_sparse(self):
df = DataFrame({'A': [nan, nan, nan, 1, 2],
'B': [1, 2, nan, nan, nan]})
sdf = df.to_sparse()
assert isinstance(sdf, SparseDataFrame)
assert np.isnan(sdf.default_fill_value)
assert isinstance(sdf['A'].sp_index, BlockIndex)
tm.assert_frame_equal(sdf.to_dense(), df)
sdf = df.to_sparse(kind='integer')
assert isinstance(sdf['A'].sp_index, IntIndex)
df = DataFrame({'A': [0, 0, 0, 1, 2],
'B': [1, 2, 0, 0, 0]}, dtype=float)
sdf = df.to_sparse(fill_value=0)
assert sdf.default_fill_value == 0
tm.assert_frame_equal(sdf.to_dense(), df)
示例6: test_astype_bool
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_astype_bool(self):
sparse = pd.SparseDataFrame({'A': SparseArray([0, 2, 0, 4],
fill_value=0,
dtype=np.int64),
'B': SparseArray([0, 5, 0, 7],
fill_value=0,
dtype=np.int64)},
default_fill_value=0)
assert sparse['A'].dtype == SparseDtype(np.int64)
assert sparse['B'].dtype == SparseDtype(np.int64)
res = sparse.astype(SparseDtype(bool, False))
exp = pd.SparseDataFrame({'A': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False,
kind='integer'),
'B': SparseArray([False, True, False, True],
dtype=np.bool,
fill_value=False,
kind='integer')},
default_fill_value=False)
tm.assert_sp_frame_equal(res, exp)
assert res['A'].dtype == SparseDtype(np.bool)
assert res['B'].dtype == SparseDtype(np.bool)
示例7: test_isna
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_isna(self):
# GH 8276
df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan],
'B': [0, np.nan, np.nan, 2, np.nan]})
res = df.isna()
exp = pd.SparseDataFrame({'A': [True, True, False, False, True],
'B': [False, True, True, False, True]},
default_fill_value=True)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan],
'B': [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.)
res = df.isna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame({'A': [False, False, False, False, True],
'B': [False, True, False, False, True]})
tm.assert_frame_equal(res.to_dense(), exp)
示例8: test_notna
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_notna(self):
# GH 8276
df = pd.SparseDataFrame({'A': [np.nan, np.nan, 1, 2, np.nan],
'B': [0, np.nan, np.nan, 2, np.nan]})
res = df.notna()
exp = pd.SparseDataFrame({'A': [False, False, True, True, False],
'B': [True, False, False, True, False]},
default_fill_value=False)
exp._default_fill_value = np.nan
tm.assert_sp_frame_equal(res, exp)
# if fill_value is not nan, True can be included in sp_values
df = pd.SparseDataFrame({'A': [0, 0, 1, 2, np.nan],
'B': [0, np.nan, 0, 2, np.nan]},
default_fill_value=0.)
res = df.notna()
assert isinstance(res, pd.SparseDataFrame)
exp = pd.DataFrame({'A': [True, True, True, True, False],
'B': [True, False, True, True, False]})
tm.assert_frame_equal(res.to_dense(), exp)
示例9: test_comparison_op_scalar
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_comparison_op_scalar(self):
# GH 13001
df = pd.DataFrame({'A': [nan, nan, 0, 1, ],
'B': [0, 1, 2, nan],
'C': [1., 2., 3., 4.],
'D': [nan, nan, nan, nan]})
sparse = df.to_sparse()
# comparison changes internal repr, compare with dense
res = sparse > 1
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), df > 1)
res = sparse != 0
assert isinstance(res, pd.SparseDataFrame)
tm.assert_frame_equal(res.to_dense(), df != 0)
示例10: test_from_scipy_correct_ordering
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_from_scipy_correct_ordering(spmatrix):
# GH 16179
arr = np.arange(1, 5).reshape(2, 2)
try:
spm = spmatrix(arr)
assert spm.dtype == arr.dtype
except (TypeError, AssertionError):
# If conversion to sparse fails for this spmatrix type and arr.dtype,
# then the combination is not currently supported in NumPy, so we
# can just skip testing it thoroughly
return
sdf = SparseDataFrame(spm)
expected = SparseDataFrame(arr)
tm.assert_sp_frame_equal(sdf, expected)
tm.assert_frame_equal(sdf.to_dense(), expected.to_dense())
示例11: get_node_id_feature_sparse
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def get_node_id_feature_sparse(self,X):
pool = ThreadPool(40)
#results = map(self.get_feaure, np.array(X.values))
results = pool.map(self.get_feaure, np.array(X.values))
results = list(results)
#print(results)
#results = np.array(results)
#print(results)
results = pd.DataFrame(results)
print(results.columns)
print("-------------")
results = pd.SparseDataFrame(pd.get_dummies(results)).astype("float")
print(results)
# columns = results.columns
# results = scipy.sparse.csr_matrix(results)
print(results.columns)
return results
示例12: setup_method
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def setup_method(self, method):
self.cols = ['string', 'int', 'float', 'object']
self.string_series = pd.SparseSeries(['a', 'b', 'c'])
self.int_series = pd.SparseSeries([1, 2, 3])
self.float_series = pd.SparseSeries([1.1, 1.2, 1.3])
self.object_series = pd.SparseSeries([[], {}, set()])
self.sdf = pd.SparseDataFrame({
'string': self.string_series,
'int': self.int_series,
'float': self.float_series,
'object': self.object_series,
})
self.sdf = self.sdf[self.cols]
self.ss = pd.SparseSeries(['a', 1, 1.1, []], index=self.cols)
示例13: test_frame_indexing_multiple
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_frame_indexing_multiple(self):
tm.assert_sp_frame_equal(self.sdf, self.sdf[:])
tm.assert_sp_frame_equal(self.sdf, self.sdf.loc[:])
tm.assert_sp_frame_equal(self.sdf.iloc[[1, 2]],
pd.SparseDataFrame({
'string': self.string_series.iloc[[1, 2]],
'int': self.int_series.iloc[[1, 2]],
'float': self.float_series.iloc[[1, 2]],
'object': self.object_series.iloc[[1, 2]]
}, index=[1, 2])[self.cols])
tm.assert_sp_frame_equal(self.sdf[['int', 'string']],
pd.SparseDataFrame({
'int': self.int_series,
'string': self.string_series,
}))
示例14: sparse_df
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def sparse_df():
return pd.SparseDataFrame({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}) # eye
示例15: test_sparse_repr_after_set
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import SparseDataFrame [as 別名]
def test_sparse_repr_after_set(self):
# GH 15488
sdf = pd.SparseDataFrame([[np.nan, 1], [2, np.nan]])
res = sdf.copy()
# Ignore the warning
with pd.option_context('mode.chained_assignment', None):
sdf[0][1] = 2 # This line triggers the bug
repr(sdf)
tm.assert_sp_frame_equal(sdf, res)