本文整理匯總了Python中pandas.RangeIndex方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.RangeIndex方法的具體用法?Python pandas.RangeIndex怎麽用?Python pandas.RangeIndex使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.RangeIndex方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getStockHdStatistics
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def getStockHdStatistics(cls, code, browser, retryCount=3):
""" 抓取持股統計
:param code: 股票代碼
:param browser: webdriver瀏覽器
:return:
"""
url = 'http://data.eastmoney.com/hsgtcg/StockHdStatistics.aspx?stock={}'.format(code)
for i in range(retryCount):
df = cls.scrap(url, browser)
if len(df) > 0:
# 修複持股數量
df['hvol'] = df['hvol'].apply(lambda x: HSGTCG.hz2Num(x)).astype(float)
df['hamount'] = df['hamount'].apply(lambda x: HSGTCG.hz2Num(x)).astype(float)
df['close'] = df['close'].astype(float)
df['tradedate'] = df['tradedate'].apply(lambda x: convertToDate(x)).astype(datetime.date)
df = df[df['tradedate'].apply(lambda x: Stocktradedate.if_tradeday(x))] # 刪除不是交易日的數據。這是東方財富網頁版的bug
df.index = pd.RangeIndex(len(df.index))
break
else:
pass
return df
示例2: test_constructor_name
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_constructor_name(self):
# GH12288
orig = RangeIndex(10)
orig.name = 'original'
copy = RangeIndex(orig)
copy.name = 'copy'
assert orig.name == 'original'
assert copy.name == 'copy'
new = Index(copy)
assert new.name == 'copy'
new.name = 'new'
assert orig.name == 'original'
assert copy.name == 'copy'
assert new.name == 'new'
示例3: test_delete
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_delete(self):
idx = RangeIndex(5, name='Foo')
expected = idx[1:].astype(int)
result = idx.delete(0)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
expected = idx[:-1].astype(int)
result = idx.delete(-1)
tm.assert_index_equal(result, expected)
assert result.name == expected.name
with pytest.raises((IndexError, ValueError)):
# either depending on numpy version
result = idx.delete(len(idx))
示例4: test_explicit_conversions
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_explicit_conversions(self):
# GH 8608
# add/sub are overridden explicitly for Float/Int Index
idx = RangeIndex(5)
# float conversions
arr = np.arange(5, dtype='int64') * 3.2
expected = Float64Index(arr)
fidx = idx * 3.2
tm.assert_index_equal(fidx, expected)
fidx = 3.2 * idx
tm.assert_index_equal(fidx, expected)
# interops with numpy arrays
expected = Float64Index(arr)
a = np.zeros(5, dtype='float64')
result = fidx - a
tm.assert_index_equal(result, expected)
expected = Float64Index(-arr)
a = np.zeros(5, dtype='float64')
result = a - fidx
tm.assert_index_equal(result, expected)
示例5: test_min_fitting_element
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_min_fitting_element(self):
result = RangeIndex(0, 20, 2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(1, 6)._min_fitting_element(1)
assert 1 == result
result = RangeIndex(18, -2, -2)._min_fitting_element(1)
assert 2 == result
result = RangeIndex(5, 0, -1)._min_fitting_element(1)
assert 1 == result
big_num = 500000000000000000000000
result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num)
assert big_num == result
示例6: test_max_fitting_element
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_max_fitting_element(self):
result = RangeIndex(0, 20, 2)._max_fitting_element(17)
assert 16 == result
result = RangeIndex(1, 6)._max_fitting_element(4)
assert 4 == result
result = RangeIndex(18, -2, -2)._max_fitting_element(17)
assert 16 == result
result = RangeIndex(5, 0, -1)._max_fitting_element(4)
assert 4 == result
big_num = 500000000000000000000000
result = RangeIndex(5, big_num * 2, 1)._max_fitting_element(big_num)
assert big_num == result
示例7: test_duplicated
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_duplicated(self, indices, keep):
if not len(indices) or isinstance(indices, (MultiIndex, RangeIndex)):
# MultiIndex tested separately in:
# tests/indexes/multi/test_unique_and_duplicates
pytest.skip('Skip check for empty Index, MultiIndex, RangeIndex')
holder = type(indices)
idx = holder(indices)
if idx.has_duplicates:
# We are testing the duplicated-method here, so we need to know
# exactly which indices are duplicate and how (for the result).
# This is not possible if "idx" has duplicates already, which we
# therefore remove. This is seemingly circular, as drop_duplicates
# invokes duplicated, but in the end, it all works out because we
# cross-check with Series.duplicated, which is tested separately.
idx = idx.drop_duplicates()
n, k = len(idx), 10
duplicated_selection = np.random.choice(n, k * n)
expected = pd.Series(duplicated_selection).duplicated(keep=keep).values
idx = holder(idx.values[duplicated_selection])
result = idx.duplicated(keep=keep)
tm.assert_numpy_array_equal(result, expected)
示例8: test_numpy_argsort
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def test_numpy_argsort(idx):
result = np.argsort(idx)
expected = idx.argsort()
tm.assert_numpy_array_equal(result, expected)
# these are the only two types that perform
# pandas compatibility input validation - the
# rest already perform separate (or no) such
# validation via their 'values' attribute as
# defined in pandas.core.indexes/base.py - they
# cannot be changed at the moment due to
# backwards compatibility concerns
if isinstance(type(idx), (CategoricalIndex, RangeIndex)):
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, axis=1)
msg = "the 'kind' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, kind='mergesort')
msg = "the 'order' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.argsort(idx, order=('a', 'b'))
示例9: setattributeindex
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def setattributeindex(self, instance, value):
bus_name = instance.bus.index
instance.branch['F_BUS'] = instance.branch['F_BUS'].apply(lambda x: value[bus_name.get_loc(x)])
instance.branch['T_BUS'] = instance.branch['T_BUS'].apply(lambda x: value[bus_name.get_loc(x)])
instance.gen['GEN_BUS'] = instance.gen['GEN_BUS'].apply(lambda x: value[bus_name.get_loc(x)])
try:
instance.load.columns = [v for b, v in zip(instance.bus_name.isin(instance.load.columns), value) if b == True]
except ValueError:
instance.load.columns = value
except AttributeError:
instance.load = pd.DataFrame(0, index=range(0, 1), columns=value, dtype='float')
instance.bus.index = value
if isinstance(instance.bus_name, pd.RangeIndex) or isinstance(instance.bus_name, pd.Int64Index):
logger.debug('Forcing string types for all bus names')
instance.bus_name = ['Bus{}'.format(b) for b in instance.bus_name]
示例10: call
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def call(cls, op, inp):
method_kwargs = op.method_kwargs
if method_kwargs.get('expand', False) is False:
return super().call(op, inp)
n = method_kwargs.get('n', -1)
# does not support if expand and n == -1
if n == -1: # pragma: no cover
raise NotImplementedError('`n` needs to be specified when expand=True')
op.output_types = [OutputType.dataframe]
columns = pd.RangeIndex(n + 1)
columns_value = parse_index(columns, store_data=True)
dtypes = pd.Series([inp.dtype] * len(columns), index=columns)
return op.new_dataframe([inp], shape=(inp.shape[0], len(columns)),
dtypes=dtypes, columns_value=columns_value,
index_value=inp.index_value)
示例11: __call__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def __call__(self, inp, inplace=False):
self._output_types = inp.op.output_types
params = inp.params
if self._ignore_index:
params['index_value'] = parse_index(pd.RangeIndex(-1))
else:
params['index_value'] = gen_unknown_index_value(
params['index_value'], self._keep, self._subset, type(self).__name__)
shape_list = list(params['shape'])
shape_list[0] = np.nan
params['shape'] = tuple(shape_list)
ret = self.new_tileable([inp], kws=[params])
if inplace:
inp.data = ret.data
return ret
示例12: _infer_df_func_returns
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def _infer_df_func_returns(self, in_dtypes, dtypes):
if self.output_types[0] == OutputType.dataframe:
empty_df = build_empty_df(in_dtypes, index=pd.RangeIndex(2))
with np.errstate(all='ignore'):
if self.call_agg:
infer_df = empty_df.agg(self._func, axis=self._axis, *self.args, **self.kwds)
else:
infer_df = empty_df.transform(self._func, axis=self._axis, *self.args, **self.kwds)
else:
empty_df = build_empty_series(in_dtypes[1], index=pd.RangeIndex(2), name=in_dtypes[0])
with np.errstate(all='ignore'):
if self.call_agg:
infer_df = empty_df.agg(self._func, args=self.args, **self.kwds)
else:
infer_df = empty_df.transform(self._func, convert_dtype=self.convert_dtype,
args=self.args, **self.kwds)
if isinstance(infer_df, pd.DataFrame):
new_dtypes = dtypes or infer_df.dtypes
self.output_types = [OutputType.dataframe]
else:
new_dtypes = dtypes or (infer_df.name, infer_df.dtype)
self.output_types = [OutputType.series]
return new_dtypes
示例13: tile
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def tile(cls, op: 'DataFrameMelt'):
inp = op.inputs[0]
out = op.outputs[0]
inp = inp.rechunk({1: (inp.shape[1],)})._inplace_tile()
chunks = []
for c in inp.chunks:
new_op = op.copy().reset_key()
chunks.append(new_op.new_chunk(
[c], index=c.index, shape=(np.nan, out.shape[1]), dtypes=out.dtypes,
index_value=parse_index(pd.RangeIndex(-1), c.key, c.index_value.key),
columns_value=out.columns_value))
chunks = standardize_range_index(chunks)
new_op = op.copy().reset_key()
return new_op.new_tileables(
[inp], chunks=chunks, nsplits=((np.nan,) * inp.chunk_shape[0], (out.shape[1],)), **out.params)
示例14: _call_dataframe
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def _call_dataframe(self, a):
if self.drop:
shape = a.shape
columns_value = a.columns_value
dtypes = a.dtypes
range_value = -1 if np.isnan(a.shape[0]) else a.shape[0]
index_value = parse_index(pd.RangeIndex(range_value))
else:
empty_df = build_empty_df(a.dtypes)
empty_df.index = a.index_value.to_pandas()[:0]
empty_df = empty_df.reset_index(level=self.level, col_level=self.col_level, col_fill=self.col_fill)
shape = (a.shape[0], len(empty_df.columns))
columns_value = parse_index(empty_df.columns, store_data=True)
dtypes = empty_df.dtypes
index_value = self._get_out_index(empty_df, shape)
return self.new_dataframe([a], shape=shape, columns_value=columns_value,
index_value=index_value, dtypes=dtypes)
示例15: testFromRecordsExecution
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import RangeIndex [as 別名]
def testFromRecordsExecution(self):
dtype = np.dtype([('x', 'int'), ('y', 'double'), ('z', '<U16')])
ndarr = np.ones((10,), dtype=dtype)
pdf_expected = pd.DataFrame.from_records(ndarr, index=pd.RangeIndex(10))
# from structured array of mars
tensor = mt.ones((10,), dtype=dtype, chunk_size=3)
df1 = from_records(tensor)
df1_result = self.executor.execute_dataframe(df1, concat=True)[0]
pd.testing.assert_frame_equal(df1_result, pdf_expected)
# from structured array of numpy
df2 = from_records(ndarr)
df2_result = self.executor.execute_dataframe(df2, concat=True)[0]
pd.testing.assert_frame_equal(df2_result, pdf_expected)