本文整理匯總了Python中pandas.Period方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.Period方法的具體用法?Python pandas.Period怎麽用?Python pandas.Period使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.Period方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_parameter_array_indexed
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_parameter_array_indexed(simple_linear_model):
"""
Test ArrayIndexedParameter
"""
model = simple_linear_model
A = np.arange(len(model.timestepper), dtype=np.float64)
p = ArrayIndexedParameter(model, A)
model.setup()
# scenario indices (not used for this test)
si = ScenarioIndex(0, np.array([0], dtype=np.int32))
for v, ts in zip(A, model.timestepper):
np.testing.assert_allclose(p.value(ts, si), v)
# Now check that IndexError is raised if an out of bounds Timestep is given.
ts = Timestep(pd.Period('2016-01-01', freq='1D'), 366, 1)
with pytest.raises(IndexError):
p.value(ts, si)
示例2: test_min_max
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_min_max(self):
arr = period_array([
'2000-01-03',
'2000-01-03',
'NaT',
'2000-01-02',
'2000-01-05',
'2000-01-04',
], freq='D')
result = arr.min()
expected = pd.Period('2000-01-02', freq='D')
assert result == expected
result = arr.max()
expected = pd.Period('2000-01-05', freq='D')
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
示例3: test_take_fill_valid
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_take_fill_valid(self, datetime_index, tz_naive_fixture):
dti = datetime_index.tz_localize(tz_naive_fixture)
arr = DatetimeArray(dti)
now = pd.Timestamp.now().tz_localize(dti.tz)
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
assert result[0] == now
with pytest.raises(ValueError):
# fill_value Timedelta invalid
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
with pytest.raises(ValueError):
# fill_value Period invalid
arr.take([-1, 1], allow_fill=True, fill_value=pd.Period('2014Q1'))
tz = None if dti.tz is not None else 'US/Eastern'
now = pd.Timestamp.now().tz_localize(tz)
with pytest.raises(TypeError):
# Timestamp with mismatched tz-awareness
arr.take([-1, 1], allow_fill=True, fill_value=now)
with pytest.raises(ValueError):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT.value)
示例4: test_is_monotonic_increasing
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_is_monotonic_increasing(self):
# GH 17717
p0 = pd.Period('2017-09-01')
p1 = pd.Period('2017-09-02')
p2 = pd.Period('2017-09-03')
idx_inc0 = pd.PeriodIndex([p0, p1, p2])
idx_inc1 = pd.PeriodIndex([p0, p1, p1])
idx_dec0 = pd.PeriodIndex([p2, p1, p0])
idx_dec1 = pd.PeriodIndex([p2, p1, p1])
idx = pd.PeriodIndex([p1, p2, p0])
assert idx_inc0.is_monotonic_increasing is True
assert idx_inc1.is_monotonic_increasing is True
assert idx_dec0.is_monotonic_increasing is False
assert idx_dec1.is_monotonic_increasing is False
assert idx.is_monotonic_increasing is False
示例5: test_is_monotonic_decreasing
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_is_monotonic_decreasing(self):
# GH 17717
p0 = pd.Period('2017-09-01')
p1 = pd.Period('2017-09-02')
p2 = pd.Period('2017-09-03')
idx_inc0 = pd.PeriodIndex([p0, p1, p2])
idx_inc1 = pd.PeriodIndex([p0, p1, p1])
idx_dec0 = pd.PeriodIndex([p2, p1, p0])
idx_dec1 = pd.PeriodIndex([p2, p1, p1])
idx = pd.PeriodIndex([p1, p2, p0])
assert idx_inc0.is_monotonic_decreasing is False
assert idx_inc1.is_monotonic_decreasing is False
assert idx_dec0.is_monotonic_decreasing is True
assert idx_dec1.is_monotonic_decreasing is True
assert idx.is_monotonic_decreasing is False
示例6: test_contains
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_contains(self):
# GH 17717
p0 = pd.Period('2017-09-01')
p1 = pd.Period('2017-09-02')
p2 = pd.Period('2017-09-03')
p3 = pd.Period('2017-09-04')
ps0 = [p0, p1, p2]
idx0 = pd.PeriodIndex(ps0)
for p in ps0:
assert idx0.contains(p)
assert p in idx0
assert idx0.contains(str(p))
assert str(p) in idx0
assert idx0.contains('2017-09-01 00:00:01')
assert '2017-09-01 00:00:01' in idx0
assert idx0.contains('2017-09')
assert '2017-09' in idx0
assert not idx0.contains(p3)
assert p3 not in idx0
示例7: test_get_indexer_non_unique
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_get_indexer_non_unique(self):
# GH 17717
p1 = pd.Period('2017-09-02')
p2 = pd.Period('2017-09-03')
p3 = pd.Period('2017-09-04')
p4 = pd.Period('2017-09-05')
idx1 = pd.PeriodIndex([p1, p2, p1])
idx2 = pd.PeriodIndex([p2, p1, p3, p4])
result = idx1.get_indexer_non_unique(idx2)
expected_indexer = np.array([1, 0, 2, -1, -1], dtype=np.intp)
expected_missing = np.array([2, 3], dtype=np.int64)
tm.assert_numpy_array_equal(result[0], expected_indexer)
tm.assert_numpy_array_equal(result[1], expected_missing)
# TODO: This method came from test_period; de-dup with version above
示例8: test_construction_base_constructor
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_construction_base_constructor(self):
# GH 13664
arr = [pd.Period('2011-01', freq='M'), pd.NaT,
pd.Period('2011-03', freq='M')]
tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr))
tm.assert_index_equal(pd.Index(np.array(arr)),
pd.PeriodIndex(np.array(arr)))
arr = [np.nan, pd.NaT, pd.Period('2011-03', freq='M')]
tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr))
tm.assert_index_equal(pd.Index(np.array(arr)),
pd.PeriodIndex(np.array(arr)))
arr = [pd.Period('2011-01', freq='M'), pd.NaT,
pd.Period('2011-03', freq='D')]
tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object))
tm.assert_index_equal(pd.Index(np.array(arr)),
pd.Index(np.array(arr), dtype=object))
示例9: test_constructor_incompat_freq
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_constructor_incompat_freq(self):
msg = "Input has different freq=D from PeriodIndex\\(freq=M\\)"
with pytest.raises(period.IncompatibleFrequency, match=msg):
PeriodIndex([Period('2011-01', freq='M'), pd.NaT,
Period('2011-01', freq='D')])
with pytest.raises(period.IncompatibleFrequency, match=msg):
PeriodIndex(np.array([Period('2011-01', freq='M'), pd.NaT,
Period('2011-01', freq='D')]))
# first element is pd.NaT
with pytest.raises(period.IncompatibleFrequency, match=msg):
PeriodIndex([pd.NaT, Period('2011-01', freq='M'),
Period('2011-01', freq='D')])
with pytest.raises(period.IncompatibleFrequency, match=msg):
PeriodIndex(np.array([pd.NaT, Period('2011-01', freq='M'),
Period('2011-01', freq='D')]))
示例10: test_negone_ordinals
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_negone_ordinals(self):
freqs = ['A', 'M', 'Q', 'D', 'H', 'T', 'S']
period = Period(ordinal=-1, freq='D')
for freq in freqs:
repr(period.asfreq(freq))
for freq in freqs:
period = Period(ordinal=-1, freq=freq)
repr(period)
assert period.year == 1969
period = Period(ordinal=-1, freq='B')
repr(period)
period = Period(ordinal=-1, freq='W')
repr(period)
示例11: test_dti_to_period
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_dti_to_period(self):
dti = pd.date_range(start='1/1/2005', end='12/1/2005', freq='M')
pi1 = dti.to_period()
pi2 = dti.to_period(freq='D')
pi3 = dti.to_period(freq='3D')
assert pi1[0] == Period('Jan 2005', freq='M')
assert pi2[0] == Period('1/31/2005', freq='D')
assert pi3[0] == Period('1/31/2005', freq='3D')
assert pi1[-1] == Period('Nov 2005', freq='M')
assert pi2[-1] == Period('11/30/2005', freq='D')
assert pi3[-1], Period('11/30/2005', freq='3D')
tm.assert_index_equal(pi1, period_range('1/1/2005', '11/1/2005',
freq='M'))
tm.assert_index_equal(pi2, period_range('1/1/2005', '11/1/2005',
freq='M').asfreq('D'))
tm.assert_index_equal(pi3, period_range('1/1/2005', '11/1/2005',
freq='M').asfreq('3D'))
示例12: test_searchsorted
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_searchsorted(self, freq):
pidx = pd.PeriodIndex(['2014-01-01', '2014-01-02', '2014-01-03',
'2014-01-04', '2014-01-05'], freq=freq)
p1 = pd.Period('2014-01-01', freq=freq)
assert pidx.searchsorted(p1) == 0
p2 = pd.Period('2014-01-04', freq=freq)
assert pidx.searchsorted(p2) == 3
msg = "Input has different freq=H from PeriodIndex"
with pytest.raises(period.IncompatibleFrequency, match=msg):
pidx.searchsorted(pd.Period('2014-01-01', freq='H'))
msg = "Input has different freq=5D from PeriodIndex"
with pytest.raises(period.IncompatibleFrequency, match=msg):
pidx.searchsorted(pd.Period('2014-01-01', freq='5D'))
示例13: test_astype_conversion
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_astype_conversion(self):
# GH#13149, GH#13209
idx = PeriodIndex(['2016-05-16', 'NaT', NaT, np.NaN], freq='D')
result = idx.astype(object)
expected = Index([Period('2016-05-16', freq='D')] +
[Period(NaT, freq='D')] * 3, dtype='object')
tm.assert_index_equal(result, expected)
result = idx.astype(np.int64)
expected = Int64Index([16937] + [-9223372036854775808] * 3,
dtype=np.int64)
tm.assert_index_equal(result, expected)
result = idx.astype(str)
expected = Index(str(x) for x in idx)
tm.assert_index_equal(result, expected)
idx = period_range('1990', '2009', freq='A')
result = idx.astype('i8')
tm.assert_index_equal(result, Index(idx.asi8))
tm.assert_numpy_array_equal(result.values, idx.asi8)
示例14: test_astype_object
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_astype_object(self):
idx = pd.PeriodIndex([], freq='M')
exp = np.array([], dtype=object)
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M')
exp = np.array([pd.Period('2011-01', freq='M'), pd.NaT], dtype=object)
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
exp = np.array([pd.Period('2011-01-01', freq='D'), pd.NaT],
dtype=object)
idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D')
tm.assert_numpy_array_equal(idx.astype(object).values, exp)
tm.assert_numpy_array_equal(idx._mpl_repr(), exp)
# TODO: de-duplicate this version (from test_ops) with the one above
# (from test_period)
示例15: test_slice_with_negative_step
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Period [as 別名]
def test_slice_with_negative_step(self):
ts = Series(np.arange(20),
period_range('2014-01', periods=20, freq='M'))
SLC = pd.IndexSlice
def assert_slices_equivalent(l_slc, i_slc):
tm.assert_series_equal(ts[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
tm.assert_series_equal(ts.loc[l_slc], ts.iloc[i_slc])
assert_slices_equivalent(SLC[Period('2014-10')::-1], SLC[9::-1])
assert_slices_equivalent(SLC['2014-10'::-1], SLC[9::-1])
assert_slices_equivalent(SLC[:Period('2014-10'):-1], SLC[:8:-1])
assert_slices_equivalent(SLC[:'2014-10':-1], SLC[:8:-1])
assert_slices_equivalent(SLC['2015-02':'2014-10':-1], SLC[13:8:-1])
assert_slices_equivalent(SLC[Period('2015-02'):Period('2014-10'):-1],
SLC[13:8:-1])
assert_slices_equivalent(SLC['2015-02':Period('2014-10'):-1],
SLC[13:8:-1])
assert_slices_equivalent(SLC[Period('2015-02'):'2014-10':-1],
SLC[13:8:-1])
assert_slices_equivalent(SLC['2014-10':'2015-02':-1], SLC[:0])