本文整理匯總了Python中pandas.Index方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.Index方法的具體用法?Python pandas.Index怎麽用?Python pandas.Index使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.Index方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: on_next
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def on_next(self, data: dict):
if not self._keys:
self._keys = self.find_keys(data)
index = pd.Index([self.clock.step], name="step")
performance_data = {k: data[k] for k in self._keys}
performance_data['base_symbol'] = self.base_instrument.symbol
performance_step = pd.DataFrame(performance_data, index=index)
net_worth = data['net_worth']
if self._performance is None:
self._performance = performance_step
self._initial_net_worth = net_worth
self._net_worth = net_worth
else:
self._performance = self._performance.append(performance_step)
self._net_worth = net_worth
if self._performance_listener:
self._performance_listener(performance_step)
示例2: test_index_names_dedup
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_dedup(self, index_class):
index_names = ['dedup', None, 'index', int(1)]
expected = [
['dedup_1', 'dedup_2'],
[None, None],
['index_1', 'index_2'],
['1_1', '1_2'],
]
for i, name in enumerate(index_names):
index_A = pd.Index(self.a.index).rename(name)
df_A = pd.DataFrame(self.a, index=index_A)
pairs = index_class.index((df_A))
assert pairs.names == expected[i]
assert df_A.index.name == name
示例3: test_duplicated_index_names_dedup
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_duplicated_index_names_dedup(self, index_class):
# make an index for each dataframe with a new index name
index_a = pd.Index(self.a.index, name='index')
df_a = pd.DataFrame(self.a, index=index_a)
# make the index
pairs = index_class.index(df_a)
assert pairs.names == ['index_1', 'index_2']
# check for inplace editing (not the intention)
assert df_a.index.name == 'index'
# make the index
index_class.suffixes = ['_a', '_b']
pairs = index_class.index(df_a)
assert pairs.names == ['index_a', 'index_b']
# check for inplace editing (not the intention)
assert df_a.index.name == 'index'
示例4: test_index_names_link
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_link(self, index_class):
# tuples with the name of the first and second index
index_names = [('index1', 'index2'),
('index1', None), (None, 'index2'), (None, None),
(10, 'index2'), (10, 11)]
for name_a, name_b in index_names:
# make an index for each dataframe with a new index name
index_a = pd.Index(self.a.index, name=name_a)
df_a = pd.DataFrame(self.a, index=index_a)
index_b = pd.Index(self.b.index, name=name_b)
df_b = pd.DataFrame(self.b, index=index_b)
pairs = index_class.index((df_a, df_b))
assert pairs.names == [name_a, name_b]
# check for inplace editing (not the intention)
assert df_a.index.name == name_a
assert df_b.index.name == name_b
示例5: test_index_names_pandas023
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_pandas023(self, index_class):
# Pandas changes the behaviour of MultiIndex names.
# https://github.com/pandas-dev/pandas/pull/18882
# https://github.com/J535D165/recordlinkage/issues/55
# This test tests compatibility.
# make an index for each dataframe with a new index name
index_a = pd.Index(self.a.index, name='index')
df_a = pd.DataFrame(self.a, index=index_a)
index_b = pd.Index(self.b.index, name='index')
df_b = pd.DataFrame(self.b, index=index_b)
# make the index
pairs_link = index_class._link_index(df_a, df_b)
if pairs_link.names[0] is not None:
assert pairs_link.names[0] != pairs_link.names[1]
# make the index
pairs_dedup = index_class._dedup_index(df_a)
if pairs_link.names[0] is not None:
assert pairs_dedup.names[0] != pairs_dedup.names[1]
示例6: test_lower_triangular
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_lower_triangular(self, index_class):
# make an index for each dataframe with a new index name
index_a = pd.Index(self.a.index, name='index')
df_a = pd.DataFrame(self.a, index=index_a)
pairs = index_class.index(df_a)
# expected
levels = [df_a.index.values, df_a.index.values]
codes = np.tril_indices(len(df_a.index), k=-1)
full_pairs = pd.MultiIndex(levels=levels,
codes=codes,
verify_integrity=False)
# all pairs are in the lower triangle of the matrix.
assert len(pairs.difference(full_pairs)) == 0
示例7: setUp
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def setUp(self):
_ranks = pd.DataFrame([[4.1, 1.3, 2.1], [0.1, 0.3, 0.2],
[2.2, 4.3, 3.2], [-6.3, -4.4, 2.1]],
index=pd.Index([c for c in 'ABCD'], name='id'),
columns=['m1', 'm2', 'm3']).T
self.ranks = Artifact.import_data('FeatureData[Conditional]', _ranks)
self.taxa = CategoricalMetadataColumn(pd.Series([
'k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; '
'o__Desulfobacterales; f__Desulfobulbaceae; g__; s__',
'k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta',
'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
'o__Rickettsiales; f__mitochondria; g__Lardizabala; s__biternata',
'k__Archaea; p__Euryarchaeota; c__Methanomicrobia; '
'o__Methanosarcinales; f__Methanosarcinaceae; g__Methanosarcina'],
index=pd.Index([c for c in 'ABCD'], name='feature-id'),
name='Taxon'))
self.metabolites = CategoricalMetadataColumn(pd.Series([
'amino acid', 'carbohydrate', 'drug metabolism'],
index=pd.Index(['m1', 'm2', 'm3'], name='feature-id'),
name='Super Pathway'))
示例8: setUp
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def setUp(self):
self.taxa = pd.Series([
'k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; '
'o__Desulfobacterales; f__Desulfobulbaceae; g__; s__',
'k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta',
'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
'o__Rickettsiales; f__mitochondria; g__Lardizabala; s__biternata',
'k__Archaea; p__Euryarchaeota; c__Methanomicrobia; '
'o__Methanosarcinales; f__Methanosarcinaceae; g__Methanosarcina',
'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
'o__Rickettsiales; f__mitochondria; g__Pavlova; s__lutheri',
'k__Archaea; p__[Parvarchaeota]; c__[Parvarchaea]; o__WCHD3-30',
'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
'o__Sphingomonadales; f__Sphingomonadaceae'],
index=pd.Index([c for c in 'ABCDEFG'], name='feature-id'),
name='Taxon')
self.exp = pd.Series(
['s__', 'o__Streptophyta', 's__biternata', 'g__Methanosarcina',
's__lutheri', 'o__WCHD3-30', 'f__Sphingomonadaceae'],
index=pd.Index([c for c in 'ABCDEFG'], name='feature-id'),
name='Taxon')
示例9: _index_to_records
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def _index_to_records(self, df):
metadata = {}
index = df.index
index_tz = None
if isinstance(index, MultiIndex):
ix_vals, index_names, index_tz = _multi_index_to_records(index, len(df) == 0)
else:
ix_vals = [index.values]
index_names = list(index.names)
if index_names[0] is None:
index_names = ['index']
log.info("Index has no name, defaulting to 'index'")
if isinstance(index, DatetimeIndex) and index.tz is not None:
index_tz = get_timezone(index.tz)
if index_tz is not None:
metadata['index_tz'] = index_tz
metadata['index'] = index_names
return index_names, ix_vals, metadata
示例10: _index_from_records
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def _index_from_records(self, recarr):
index = recarr.dtype.metadata['index']
if len(index) == 1:
rtn = Index(np.copy(recarr[str(index[0])]), name=index[0])
if isinstance(rtn, DatetimeIndex) and 'index_tz' in recarr.dtype.metadata:
rtn = rtn.tz_localize('UTC').tz_convert(recarr.dtype.metadata['index_tz'])
else:
level_arrays = []
index_tz = recarr.dtype.metadata.get('index_tz', [])
for level_no, index_name in enumerate(index):
# build each index level separately to ensure we end up with the right index dtype
level = Index(np.copy(recarr[str(index_name)]))
if level_no < len(index_tz):
tz = index_tz[level_no]
if tz is not None:
if not isinstance(level, DatetimeIndex) and len(level) == 0:
# index type information got lost during save as the index was empty, cast back
level = DatetimeIndex([], tz=tz)
else:
level = level.tz_localize('UTC').tz_convert(tz)
level_arrays.append(level)
rtn = MultiIndex.from_arrays(level_arrays, names=index)
return rtn
示例11: test_update
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update(chunkstore_lib):
df = DataFrame(data={'data': [1, 2, 3]},
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'))
df2 = DataFrame(data={'data': [20, 30, 40]},
index=pd.Index(data=[dt(2016, 1, 2),
dt(2016, 1, 3),
dt(2016, 1, 4)], name='date'))
equals = DataFrame(data={'data': [1, 20, 30, 40]},
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3),
dt(2016, 1, 4)], name='date'))
chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
chunkstore_lib.update('chunkstore_test', df2)
assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals)
assert(chunkstore_lib.get_info('chunkstore_test')['len'] == len(equals))
assert(chunkstore_lib.get_info('chunkstore_test')['chunk_count'] == len(equals))
示例12: test_update_no_overlap
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_no_overlap(chunkstore_lib):
df = DataFrame(data={'data': [1, 2, 3]},
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'))
df2 = DataFrame(data={'data': [20, 30, 40]},
index=pd.Index(data=[dt(2015, 1, 2),
dt(2015, 1, 3),
dt(2015, 1, 4)], name='date'))
equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]},
index=pd.Index(data=[dt(2015, 1, 2),
dt(2015, 1, 3),
dt(2015, 1, 4),
dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'))
chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
chunkstore_lib.update('chunkstore_test', df2)
assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals)
示例13: test_update_chunk_range
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_chunk_range(chunkstore_lib):
df = DataFrame(data={'data': [1, 2, 3]},
index=pd.Index(data=[dt(2015, 1, 1),
dt(2015, 1, 2),
dt(2015, 1, 3)], name='date'))
df2 = DataFrame(data={'data': [30]},
index=pd.Index(data=[dt(2015, 1, 2)],
name='date'))
equals = DataFrame(data={'data': [30, 3]},
index=pd.Index(data=[dt(2015, 1, 2),
dt(2015, 1, 3)],
name='date'))
chunkstore_lib.write('chunkstore_test', df, chunk_size='M')
chunkstore_lib.update('chunkstore_test', df2, chunk_range=DateRange(dt(2015, 1, 1), dt(2015, 1, 2)))
assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals)
示例14: test_append_before
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_append_before(chunkstore_lib):
df = DataFrame(data={'data': [1, 2, 3]},
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'))
df2 = DataFrame(data={'data': [20, 30, 40]},
index=pd.Index(data=[dt(2015, 1, 2),
dt(2015, 1, 3),
dt(2015, 1, 4)], name='date'))
equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]},
index=pd.Index(data=[dt(2015, 1, 2),
dt(2015, 1, 3),
dt(2015, 1, 4),
dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'))
chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
chunkstore_lib.append('chunkstore_test', df2)
assert_frame_equal(chunkstore_lib.read('chunkstore_test') , equals)
示例15: test_update_series
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_series(chunkstore_lib):
df = Series(data=[1, 2, 3],
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3)], name='date'),
name='data')
df2 = Series(data=[20, 30, 40],
index=pd.Index(data=[dt(2016, 1, 2),
dt(2016, 1, 3),
dt(2016, 1, 4)], name='date'),
name='data')
equals = Series(data=[1, 20, 30, 40],
index=pd.Index(data=[dt(2016, 1, 1),
dt(2016, 1, 2),
dt(2016, 1, 3),
dt(2016, 1, 4)], name='date'),
name='data')
chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
chunkstore_lib.update('chunkstore_test', df2)
assert_series_equal(chunkstore_lib.read('chunkstore_test'), equals)