當前位置: 首頁>>代碼示例>>Python>>正文


Python pandas.Index方法代碼示例

本文整理匯總了Python中pandas.Index方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.Index方法的具體用法?Python pandas.Index怎麽用?Python pandas.Index使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas的用法示例。


在下文中一共展示了pandas.Index方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: on_next

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def on_next(self, data: dict):
        if not self._keys:
            self._keys = self.find_keys(data)

        index = pd.Index([self.clock.step], name="step")
        performance_data = {k: data[k] for k in self._keys}
        performance_data['base_symbol'] = self.base_instrument.symbol
        performance_step = pd.DataFrame(performance_data, index=index)

        net_worth = data['net_worth']

        if self._performance is None:
            self._performance = performance_step
            self._initial_net_worth = net_worth
            self._net_worth = net_worth
        else:
            self._performance = self._performance.append(performance_step)
            self._net_worth = net_worth

        if self._performance_listener:
            self._performance_listener(performance_step) 
開發者ID:tensortrade-org,項目名稱:tensortrade,代碼行數:23,代碼來源:portfolio.py

示例2: test_index_names_dedup

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_dedup(self, index_class):

        index_names = ['dedup', None, 'index', int(1)]
        expected = [
            ['dedup_1', 'dedup_2'],
            [None, None],
            ['index_1', 'index_2'],
            ['1_1', '1_2'],
        ]

        for i, name in enumerate(index_names):

            index_A = pd.Index(self.a.index).rename(name)
            df_A = pd.DataFrame(self.a, index=index_A)

            pairs = index_class.index((df_A))

            assert pairs.names == expected[i]
            assert df_A.index.name == name 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:21,代碼來源:test_indexing.py

示例3: test_duplicated_index_names_dedup

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_duplicated_index_names_dedup(self, index_class):

        # make an index for each dataframe with a new index name
        index_a = pd.Index(self.a.index, name='index')
        df_a = pd.DataFrame(self.a, index=index_a)

        # make the index
        pairs = index_class.index(df_a)
        assert pairs.names == ['index_1', 'index_2']

        # check for inplace editing (not the intention)
        assert df_a.index.name == 'index'

        # make the index
        index_class.suffixes = ['_a', '_b']
        pairs = index_class.index(df_a)
        assert pairs.names == ['index_a', 'index_b']

        # check for inplace editing (not the intention)
        assert df_a.index.name == 'index' 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:22,代碼來源:test_indexing.py

示例4: test_index_names_link

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_link(self, index_class):

        # tuples with the name of the first and second index
        index_names = [('index1', 'index2'),
                       ('index1', None), (None, 'index2'), (None, None),
                       (10, 'index2'), (10, 11)]

        for name_a, name_b in index_names:

            # make an index for each dataframe with a new index name
            index_a = pd.Index(self.a.index, name=name_a)
            df_a = pd.DataFrame(self.a, index=index_a)

            index_b = pd.Index(self.b.index, name=name_b)
            df_b = pd.DataFrame(self.b, index=index_b)

            pairs = index_class.index((df_a, df_b))
            assert pairs.names == [name_a, name_b]

            # check for inplace editing (not the intention)
            assert df_a.index.name == name_a
            assert df_b.index.name == name_b 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:24,代碼來源:test_indexing.py

示例5: test_index_names_pandas023

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_index_names_pandas023(self, index_class):
        # Pandas changes the behaviour of MultiIndex names.
        # https://github.com/pandas-dev/pandas/pull/18882
        # https://github.com/J535D165/recordlinkage/issues/55
        # This test tests compatibility.

        # make an index for each dataframe with a new index name
        index_a = pd.Index(self.a.index, name='index')
        df_a = pd.DataFrame(self.a, index=index_a)

        index_b = pd.Index(self.b.index, name='index')
        df_b = pd.DataFrame(self.b, index=index_b)

        # make the index
        pairs_link = index_class._link_index(df_a, df_b)

        if pairs_link.names[0] is not None:
            assert pairs_link.names[0] != pairs_link.names[1]

        # make the index
        pairs_dedup = index_class._dedup_index(df_a)

        if pairs_link.names[0] is not None:
            assert pairs_dedup.names[0] != pairs_dedup.names[1] 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:26,代碼來源:test_indexing.py

示例6: test_lower_triangular

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_lower_triangular(self, index_class):

        # make an index for each dataframe with a new index name
        index_a = pd.Index(self.a.index, name='index')
        df_a = pd.DataFrame(self.a, index=index_a)
        pairs = index_class.index(df_a)

        # expected
        levels = [df_a.index.values, df_a.index.values]
        codes = np.tril_indices(len(df_a.index), k=-1)

        full_pairs = pd.MultiIndex(levels=levels,
                                   codes=codes,
                                   verify_integrity=False)

        # all pairs are in the lower triangle of the matrix.
        assert len(pairs.difference(full_pairs)) == 0 
開發者ID:J535D165,項目名稱:recordlinkage,代碼行數:19,代碼來源:test_indexing.py

示例7: setUp

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def setUp(self):
        _ranks = pd.DataFrame([[4.1, 1.3, 2.1], [0.1, 0.3, 0.2],
                               [2.2, 4.3, 3.2], [-6.3, -4.4, 2.1]],
                              index=pd.Index([c for c in 'ABCD'], name='id'),
                              columns=['m1', 'm2', 'm3']).T
        self.ranks = Artifact.import_data('FeatureData[Conditional]', _ranks)
        self.taxa = CategoricalMetadataColumn(pd.Series([
            'k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; '
            'o__Desulfobacterales; f__Desulfobulbaceae; g__; s__',
            'k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta',
            'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
            'o__Rickettsiales; f__mitochondria; g__Lardizabala; s__biternata',
            'k__Archaea; p__Euryarchaeota; c__Methanomicrobia; '
            'o__Methanosarcinales; f__Methanosarcinaceae; g__Methanosarcina'],
            index=pd.Index([c for c in 'ABCD'], name='feature-id'),
            name='Taxon'))
        self.metabolites = CategoricalMetadataColumn(pd.Series([
            'amino acid', 'carbohydrate', 'drug metabolism'],
            index=pd.Index(['m1', 'm2', 'm3'], name='feature-id'),
            name='Super Pathway')) 
開發者ID:biocore,項目名稱:mmvec,代碼行數:22,代碼來源:test_visualizers.py

示例8: setUp

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def setUp(self):
        self.taxa = pd.Series([
            'k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; '
            'o__Desulfobacterales; f__Desulfobulbaceae; g__; s__',
            'k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta',
            'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
            'o__Rickettsiales; f__mitochondria; g__Lardizabala; s__biternata',
            'k__Archaea; p__Euryarchaeota; c__Methanomicrobia; '
            'o__Methanosarcinales; f__Methanosarcinaceae; g__Methanosarcina',
            'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
            'o__Rickettsiales; f__mitochondria; g__Pavlova; s__lutheri',
            'k__Archaea; p__[Parvarchaeota]; c__[Parvarchaea]; o__WCHD3-30',
            'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; '
            'o__Sphingomonadales; f__Sphingomonadaceae'],
            index=pd.Index([c for c in 'ABCDEFG'], name='feature-id'),
            name='Taxon')
        self.exp = pd.Series(
            ['s__', 'o__Streptophyta', 's__biternata', 'g__Methanosarcina',
             's__lutheri', 'o__WCHD3-30', 'f__Sphingomonadaceae'],
            index=pd.Index([c for c in 'ABCDEFG'], name='feature-id'),
            name='Taxon') 
開發者ID:biocore,項目名稱:mmvec,代碼行數:23,代碼來源:test_heatmap.py

示例9: _index_to_records

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def _index_to_records(self, df):
        metadata = {}
        index = df.index
        index_tz = None

        if isinstance(index, MultiIndex):
            ix_vals, index_names, index_tz = _multi_index_to_records(index, len(df) == 0)
        else:
            ix_vals = [index.values]
            index_names = list(index.names)
            if index_names[0] is None:
                index_names = ['index']
                log.info("Index has no name, defaulting to 'index'")
            if isinstance(index, DatetimeIndex) and index.tz is not None:
                index_tz = get_timezone(index.tz)

        if index_tz is not None:
            metadata['index_tz'] = index_tz
        metadata['index'] = index_names

        return index_names, ix_vals, metadata 
開發者ID:man-group,項目名稱:arctic,代碼行數:23,代碼來源:numpy_records.py

示例10: _index_from_records

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def _index_from_records(self, recarr):
        index = recarr.dtype.metadata['index']

        if len(index) == 1:
            rtn = Index(np.copy(recarr[str(index[0])]), name=index[0])
            if isinstance(rtn, DatetimeIndex) and 'index_tz' in recarr.dtype.metadata:
                rtn = rtn.tz_localize('UTC').tz_convert(recarr.dtype.metadata['index_tz'])
        else:
            level_arrays = []
            index_tz = recarr.dtype.metadata.get('index_tz', [])
            for level_no, index_name in enumerate(index):
                # build each index level separately to ensure we end up with the right index dtype
                level = Index(np.copy(recarr[str(index_name)]))
                if level_no < len(index_tz):
                    tz = index_tz[level_no]
                    if tz is not None:
                        if not isinstance(level, DatetimeIndex) and len(level) == 0:
                            # index type information got lost during save as the index was empty, cast back
                            level = DatetimeIndex([], tz=tz)
                        else:
                            level = level.tz_localize('UTC').tz_convert(tz)
                level_arrays.append(level)
            rtn = MultiIndex.from_arrays(level_arrays, names=index)
        return rtn 
開發者ID:man-group,項目名稱:arctic,代碼行數:26,代碼來源:numpy_records.py

示例11: test_update

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update(chunkstore_lib):
    df = DataFrame(data={'data': [1, 2, 3]},
                   index=pd.Index(data=[dt(2016, 1, 1),
                                        dt(2016, 1, 2),
                                        dt(2016, 1, 3)], name='date'))
    df2 = DataFrame(data={'data': [20, 30, 40]},
                    index=pd.Index(data=[dt(2016, 1, 2),
                                         dt(2016, 1, 3),
                                         dt(2016, 1, 4)], name='date'))

    equals = DataFrame(data={'data': [1, 20, 30, 40]},
                       index=pd.Index(data=[dt(2016, 1, 1),
                                            dt(2016, 1, 2),
                                            dt(2016, 1, 3),
                                            dt(2016, 1, 4)], name='date'))

    chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
    chunkstore_lib.update('chunkstore_test', df2)
    assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals)
    assert(chunkstore_lib.get_info('chunkstore_test')['len'] == len(equals))
    assert(chunkstore_lib.get_info('chunkstore_test')['chunk_count'] == len(equals)) 
開發者ID:man-group,項目名稱:arctic,代碼行數:23,代碼來源:test_chunkstore.py

示例12: test_update_no_overlap

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_no_overlap(chunkstore_lib):
    df = DataFrame(data={'data': [1, 2, 3]},
                   index=pd.Index(data=[dt(2016, 1, 1),
                                        dt(2016, 1, 2),
                                        dt(2016, 1, 3)], name='date'))
    df2 = DataFrame(data={'data': [20, 30, 40]},
                    index=pd.Index(data=[dt(2015, 1, 2),
                                         dt(2015, 1, 3),
                                         dt(2015, 1, 4)], name='date'))

    equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]},
                       index=pd.Index(data=[dt(2015, 1, 2),
                                            dt(2015, 1, 3),
                                            dt(2015, 1, 4),
                                            dt(2016, 1, 1),
                                            dt(2016, 1, 2),
                                            dt(2016, 1, 3)], name='date'))

    chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
    chunkstore_lib.update('chunkstore_test', df2)
    assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals) 
開發者ID:man-group,項目名稱:arctic,代碼行數:23,代碼來源:test_chunkstore.py

示例13: test_update_chunk_range

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_chunk_range(chunkstore_lib):
    df = DataFrame(data={'data': [1, 2, 3]},
                   index=pd.Index(data=[dt(2015, 1, 1),
                                        dt(2015, 1, 2),
                                        dt(2015, 1, 3)], name='date'))
    df2 = DataFrame(data={'data': [30]},
                    index=pd.Index(data=[dt(2015, 1, 2)],
                                   name='date'))
    equals = DataFrame(data={'data': [30, 3]},
                       index=pd.Index(data=[dt(2015, 1, 2),
                                            dt(2015, 1, 3)],
                                      name='date'))

    chunkstore_lib.write('chunkstore_test', df, chunk_size='M')
    chunkstore_lib.update('chunkstore_test', df2, chunk_range=DateRange(dt(2015, 1, 1), dt(2015, 1, 2)))
    assert_frame_equal(chunkstore_lib.read('chunkstore_test'), equals) 
開發者ID:man-group,項目名稱:arctic,代碼行數:18,代碼來源:test_chunkstore.py

示例14: test_append_before

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_append_before(chunkstore_lib):
    df = DataFrame(data={'data': [1, 2, 3]},
                   index=pd.Index(data=[dt(2016, 1, 1),
                                        dt(2016, 1, 2),
                                        dt(2016, 1, 3)], name='date'))
    df2 = DataFrame(data={'data': [20, 30, 40]},
                    index=pd.Index(data=[dt(2015, 1, 2),
                                         dt(2015, 1, 3),
                                         dt(2015, 1, 4)], name='date'))

    equals = DataFrame(data={'data': [20, 30, 40, 1, 2, 3]},
                       index=pd.Index(data=[dt(2015, 1, 2),
                                            dt(2015, 1, 3),
                                            dt(2015, 1, 4),
                                            dt(2016, 1, 1),
                                            dt(2016, 1, 2),
                                            dt(2016, 1, 3)], name='date'))

    chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
    chunkstore_lib.append('chunkstore_test', df2)
    assert_frame_equal(chunkstore_lib.read('chunkstore_test') , equals) 
開發者ID:man-group,項目名稱:arctic,代碼行數:23,代碼來源:test_chunkstore.py

示例15: test_update_series

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import Index [as 別名]
def test_update_series(chunkstore_lib):
    df = Series(data=[1, 2, 3],
                index=pd.Index(data=[dt(2016, 1, 1),
                                     dt(2016, 1, 2),
                                     dt(2016, 1, 3)], name='date'),
                name='data')
    df2 = Series(data=[20, 30, 40],
                 index=pd.Index(data=[dt(2016, 1, 2),
                                      dt(2016, 1, 3),
                                      dt(2016, 1, 4)], name='date'),
                 name='data')

    equals = Series(data=[1, 20, 30, 40],
                    index=pd.Index(data=[dt(2016, 1, 1),
                                         dt(2016, 1, 2),
                                         dt(2016, 1, 3),
                                         dt(2016, 1, 4)], name='date'),
                    name='data')

    chunkstore_lib.write('chunkstore_test', df, chunk_size='D')
    chunkstore_lib.update('chunkstore_test', df2)
    assert_series_equal(chunkstore_lib.read('chunkstore_test'), equals) 
開發者ID:man-group,項目名稱:arctic,代碼行數:24,代碼來源:test_chunkstore.py


注:本文中的pandas.Index方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。