本文整理匯總了Python中pandas.HDFStore方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.HDFStore方法的具體用法?Python pandas.HDFStore怎麽用?Python pandas.HDFStore使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.HDFStore方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: iMain
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def iMain():
"""
Read an hdf file generated by us to make sure
we can recover its content and structure.
Give the name of an hdf5 file as a command-line argument.
"""
assert sys.argv, __doc__
sFile = sys.argv[1]
assert os.path.isfile(sFile)
oHdfStore = pandas.HDFStore(sFile, mode='r')
print oHdfStore.groups()
# bug - no return value
# oSignals = pandas.read_hdf(oHdfStore, '/servings/signals')
mSignals = oHdfStore.select('/recipe/servings/mSignals', auto_close=False)
print mSignals
print oHdfStore.get_node('/recipe')._v_attrs.metadata[0]['sUrl']
示例2: _create_csi_index
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def _create_csi_index(store, key, column_name):
"""Create a CSI index on a column in an HDF5 file.
The column must have been already specified in the data_columns call to
to_hdf or it won't be stored correctly in the HDF5 file.
Parameters
----------
store : :class:`pandas.HDFStore`
An HDF5 file opened as an instance of a :class:`pandas.HDFStore`
object.
key : str
The key of the DataFrame to use.
column_name : str
The column to add a CSI index to.
"""
key_store = store.get_storer(key)
use_name = _map_column_name(key_store, column_name)
column = key_store.table.colinstances[use_name]
if not column.index.is_csi:
column.remove_index()
column.create_csindex()
示例3: write_models
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def write_models(self, tag=None):
"""Write the models of the light curves to disk.
The models will be stored in the features directory using the dataset's
name and the given features tag. Note that for now the models are
stored as individual tables in the HDF5 file because there doesn't
appear to be a good way to store fixed length arrays in pandas.
WARNING: This is not the best way to implement this, and there are
definitely much better ways. This also isn't thread-safe at all.
Parameters
----------
tag : str (optional)
The tag for this version of the features. By default, this will use
settings['features_tag'].
"""
models_path = self.get_models_path(tag=tag)
store = pd.HDFStore(models_path, "a")
for model_name, model in self.models.items():
model.to_hdf(store, model_name, mode="a")
store.close()
示例4: _write_pandas_data
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def _write_pandas_data(path: Path, entity_key: EntityKey, data: Union[PandasObj]):
"""Write data in a pandas format to an HDF file.
This method currently supports :class:`pandas DataFrame` objects, with or
with or without columns, and :class:`pandas.Series` objects.
"""
if data.empty:
# Our data is indexed, sometimes with no other columns. This leaves an
# empty dataframe that store.put will silently fail to write in table
# format.
data = data.reset_index()
if data.empty:
raise ValueError("Cannot write an empty dataframe that does not have an index.")
metadata = {'is_empty': True}
data_columns = True
else:
metadata = {'is_empty': False}
data_columns = None
with pd.HDFStore(str(path), complevel=9) as store:
store.put(entity_key.path, data, format="table", data_columns=data_columns)
store.get_storer(entity_key.path).attrs.metadata = metadata # NOTE: must use attrs. write this up
示例5: _store_bg_data
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def _store_bg_data(store, base_name, min_ph_delays_us, best_bg, best_th,
BG_data, BG_data_e):
if not base_name.endswith('/'):
base_name = base_name + '/'
store_name = store.filename
group_name = '/' + base_name[:-1]
store.create_carray(group_name, 'min_ph_delays_us', obj=min_ph_delays_us,
createparents=True)
for ph_sel, values in BG_data.items():
store.create_carray(group_name, str(ph_sel), obj=values)
for ph_sel, values in BG_data_e.items():
store.create_carray(group_name, str(ph_sel) + '_err', obj=values)
store.close()
store = pd.HDFStore(store_name)
store[base_name + 'best_bg'] = best_bg
store[base_name + 'best_th'] = best_th
store.close()
示例6: _load_bg_data
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def _load_bg_data(store, base_name, ph_streams):
if not base_name.endswith('/'):
base_name = base_name + '/'
store_name = store.filename
group_name = '/' + base_name[:-1]
min_ph_delays = store.get_node(group_name, 'min_ph_delays_us')[:]
BG_data = {}
for ph_sel in ph_streams:
BG_data[ph_sel] = store.get_node(group_name, str(ph_sel))[:]
BG_data_e = {}
for ph_sel in ph_streams:
BG_data_e[ph_sel] = store.get_node(group_name, str(ph_sel) + '_err')[:]
store.close()
store = pd.HDFStore(store_name)
best_bg = store[base_name + 'best_bg']
best_th = store[base_name + 'best_th']
store.close()
return best_th, best_bg, BG_data, BG_data_e, min_ph_delays
示例7: save
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def save(_filename, _dataframe, **options):
if options.get("dataname"):
_dataname = options.get("dataname")
else:
_dataname = "twint"
if not options.get("type"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
_store = pd.HDFStore(_filename + ".h5")
_store[_dataname] = _dataframe
_store.close()
elif options.get("type") == "Pickle":
with warnings.catch_warnings():
warnings.simplefilter("ignore")
_dataframe.to_pickle(_filename + ".pkl")
else:
print("""Please specify: filename, DataFrame, DataFrame name and type
(HDF5, default, or Pickle)""")
示例8: read
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def read(_filename, **options):
if not options.get("dataname"):
_dataname = "twint"
else:
_dataname = options.get("dataname")
if not options.get("type"):
_store = pd.HDFStore(_filename + ".h5")
_df = _store[_dataname]
return _df
elif options.get("type") == "Pickle":
_df = pd.read_pickle(_filename + ".pkl")
return _df
else:
print("""Please specify: DataFrame, DataFrame name (twint as default),
filename and type (HDF5, default, or Pickle""")
示例9: _open_hdf5
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def _open_hdf5(self, file_path):
"""Return the file handle of an HDF5 file as an pd.HDFStore object
Cache and return the file handle for the HDF5 file at <file_path>
Args:
file_path (str): The path of the desired file
Return:
The cached file handle
"""
if (file_path not in self._file_handles or
not self._file_handles[file_path].is_open):
self._file_handles[file_path] = pd.HDFStore(file_path, 'r')
return self._file_handles[file_path]
示例10: store_dataframes
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def store_dataframes(out_hdf, **kwargs):
# DataFrames to serialize have to be passed by keyword arguments. An argument matrix1=DataFrame(...)
# will be written into table 'matrix1' in the HDF file.
complevel = kwargs.pop('complevel', 9) # default complevel & complib values if
complib = kwargs.pop('complib', 'zlib') # not explicitly asked for as arguments
if VERBOSE:
print(now(), 'Storing %d DataFrames in file %s with compression settings %d %s...' % (len(kwargs), out_hdf, complevel, complib))
store = pd.HDFStore(out_hdf, complevel=complevel, complib=complib) # TODO: WRITE ONLY? it probably appends now
for table_name, dataframe in kwargs.items():
store[table_name] = dataframe
store.close()
if VERBOSE:
print(now(), 'DataFrames stored in file.')
示例11: test_write_tables
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def test_write_tables(df, store_name):
orca.add_table('table', df)
@orca.step()
def step(table):
pass
step_tables = orca.get_step_table_names(['step'])
orca.write_tables(store_name, step_tables, None)
with pd.HDFStore(store_name, mode='r') as store:
assert 'table' in store
pdt.assert_frame_equal(store['table'], df)
orca.write_tables(store_name, step_tables, 1969)
with pd.HDFStore(store_name, mode='r') as store:
assert '1969/table' in store
pdt.assert_frame_equal(store['1969/table'], df)
示例12: test_run_and_write_tables_out_tables_provided
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def test_run_and_write_tables_out_tables_provided(df, store_name):
table_names = ['table', 'table2', 'table3']
for t in table_names:
orca.add_table(t, df)
@orca.step()
def step(iter_var, table, table2):
return
orca.run(
['step'],
iter_vars=range(1),
data_out=store_name,
out_base_tables=table_names,
out_run_tables=['table'])
with pd.HDFStore(store_name, mode='r') as store:
for t in table_names:
assert 'base/{}'.format(t) in store
assert '0/table' in store
assert '0/table2' not in store
assert '0/table3' not in store
示例13: write
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def write(self, frames):
"""
Write the frames to the target HDF5 file, using the format used by
``pd.Panel.to_hdf``
Parameters
----------
frames : iter[(int, DataFrame)] or dict[int -> DataFrame]
An iterable or other mapping of sid to the corresponding OHLCV
pricing data.
"""
with HDFStore(self._path, 'w',
complevel=self._complevel, complib=self._complib) \
as store:
panel = pd.Panel.from_dict(dict(frames))
panel.to_hdf(store, 'updates')
with tables.open_file(self._path, mode='r+') as h5file:
h5file.set_node_attr('/', 'version', 0)
示例14: calculate_bgnd_from_masked_fulldata
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def calculate_bgnd_from_masked_fulldata(masked_image_file):
"""
- Opens the masked_image_file hdf5 file, reads the /full_data node and
creates a "background" by taking the maximum value of each pixel over time.
- Parses the file name to find a camera serial number
- reads the pixel/um ratio from the masked_image_file
"""
import numpy as np
from tierpsy.helper.params import read_unit_conversions
# read attributes of masked_image_file
_, (microns_per_pixel, xy_units) , is_light_background = read_unit_conversions(masked_image_file)
# get "background" and px2um
with pd.HDFStore(masked_image_file, 'r') as fid:
assert is_light_background, \
'MultiWell recognition is only available for brightfield at the moment'
img = np.max(fid.get_node('/full_data'), axis=0)
camera_serial = parse_camera_serial(masked_image_file)
return img, camera_serial, microns_per_pixel
示例15: ow_plate_summary
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import HDFStore [as 別名]
def ow_plate_summary(fname):
all_feats = read_feat_events(fname)
with pd.HDFStore(fname, 'r') as fid:
features_timeseries = fid['/features_timeseries']
for cc in features_timeseries:
all_feats[cc] = features_timeseries[cc].values
wStats = WormStats()
exp_feats = wStats.getWormStats(all_feats, np.nanmean)
exp_feats = pd.DataFrame(exp_feats)
valid_order = [x for x in exp_feats.columns if x not in wStats.extra_fields]
exp_feats = exp_feats.loc[:, valid_order]
return [exp_feats]
#%%