本文整理匯總了Python中pandas.DataFrames方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.DataFrames方法的具體用法?Python pandas.DataFrames怎麽用?Python pandas.DataFrames使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pandas
的用法示例。
在下文中一共展示了pandas.DataFrames方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def __init__(self, corr_list, column_names, fit_dates):
"""
Returns a time series of forecasts for a particular instrument
:param instrument_code:
:type str:
:param rule_variation_list:
:type list: list of str to get forecasts for, if None uses get_trading_rule_list
:returns: TxN pd.DataFrames; columns rule_variation_name
"""
setattr(self, "corr_list", corr_list)
setattr(self, "columns", column_names)
setattr(self, "fit_dates", fit_dates)
示例2: get_capped_forecast
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_capped_forecast(self, instrument_code, rule_variation_name):
"""
Get the capped forecast from the previous module
KEY INPUT
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Tx1 pd.DataFrames
"""
return self.parent.forecastScaleCap.get_capped_forecast(
instrument_code, rule_variation_name)
示例3: get_forecast_weights
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_forecast_weights(self, instrument_code):
"""
Get the capped forecast from the previous module
KEY INPUT
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: dict of Tx1 pd.DataFrames
"""
return self.parent.combForecast.get_forecast_weights(instrument_code)
示例4: get_aligned_forecast
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_aligned_forecast(self, instrument_code, rule_variation_name):
"""
Get the capped forecast aligned to daily prices
KEY INPUT
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Tx1 pd.DataFrames
"""
price = self.get_daily_price(instrument_code)
forecast = self.get_capped_forecast(instrument_code,
rule_variation_name)
forecast = forecast.reindex(price.index).ffill()
return forecast
示例5: get_daily_returns_volatility
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_daily_returns_volatility(self, instrument_code):
"""
Get the daily return (not %) volatility from previous stage, or calculate
KEY INPUT
:param instrument_code:
:type str:
:returns: Tx1 pd.DataFrames
"""
system = self.parent
if hasattr(system, "rawdata"):
returns_vol = system.rawdata.daily_returns_volatility(
instrument_code)
else:
price = self.get_daily_price(instrument_code)
returns_vol = robust_vol_calc(price.diff())
return returns_vol
示例6: is_same_as
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def is_same_as(df, df_to_compare, **kwargs):
"""Asserts that two pd.DataFrames are equal.
Args:
df (pd.DataFrame): Any pd.DataFrame.
df_to_compare (pd.DataFrame): A second pd.DataFrame.
**kwargs (dict): Keyword arguments passed through to pandas' ``assert_frame_equal``.
Returns:
Original `df`.
"""
try:
tm.assert_frame_equal(df, df_to_compare, **kwargs)
except AssertionError as exc:
raise AssertionError("DataFrames are not equal") from exc
return df
示例7: _check_params
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def _check_params(params):
"""Check params has a unique index and contains no columns to be created internally.
Args:
params (pd.DataFrame or list of pd.DataFrames): See :ref:`params`.
Raises:
AssertionError: The index contains duplicates.
ValueError: The DataFrame contains internal columns.
"""
assert (
not params.index.duplicated().any()
), "No duplicates allowed in the index of params."
invalid_names = [
"_fixed",
"_fixed_value",
"_is_fixed_to_value",
"_is_fixed_to_other",
]
invalid_present_columns = []
for col in params.columns:
if col in invalid_names or col.startswith("_internal"):
invalid_present_columns.append(col)
if len(invalid_present_columns) > 0:
msg = (
"Column names starting with '_internal' and as well as any other of the "
f"following columns are not allowed in params:\n{invalid_names}."
f"This is violated for:\n{invalid_present_columns}."
)
raise ValueError(msg)
示例8: read_data
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def read_data(data_dir, dates):
"""Builds dataframe for model and func benchmarks Assumes directory is structured as
DATA_PATH
|_2020-02-20
|_func_benchmarks.csv
|_model_benchmarks.csv
Args:
data_dir (pathlib.path): path containing month subdirectories
dates (list of str): containing dates / subdirectories available
Returns: tuple of pd.DataFrames containing func and model benchmarks with dates
"""
func_df, model_df = None, None
for date in dates:
path = os.path.join(data_dir, date)
tmp_func_df = pd.read_csv(os.path.join(path, "func_benchmarks.csv"))
tmp_model_df = pd.read_csv(os.path.join(path, "model_benchmarks.csv"))
tmp_func_df["date"], tmp_model_df["date"] = date, date
if func_df is None:
func_df = tmp_func_df.copy()
model_df = tmp_model_df.copy()
else:
func_df = func_df.append(tmp_func_df)
model_df = model_df.append(tmp_model_df)
func_df = compute_runtime_gap(func_df)
func_df = add_error_bars(func_df)
return func_df, model_df
示例9: apply_viewdf_layout
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def apply_viewdf_layout(df, x, y):
'''
Takes a pd.DataFrames and applies Quantipy's Question/Values
layout to it by creating a multiindex on both axes.
Parameters
----------
df : pd.DataFrame
x, y : str
Variable names from the processed case data input,
i.e. the link definition.
Returns
-------
df : pd.Dataframe (multiindexed)
'''
axis_labels = ['Question', 'Values']
df.index = pd.MultiIndex.from_product([[x], df.index], names=axis_labels)
if y is None:
df.columns = pd.MultiIndex.from_product([[x], df.columns], names=axis_labels)
elif y == '@':
df.columns = pd.MultiIndex.from_product([[x], '@'], names=axis_labels)
else:
df.columns = pd.MultiIndex.from_product([[y], df.columns], names=axis_labels)
return df
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
示例10: set_qp_multiindex
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def set_qp_multiindex(df, x, y):
'''
Takes a pd.DataFrames and applies Quantipy's Question/Values
layout to it by creating a multiindex on both axes.
Parameters
----------
df : pd.DataFrame
x, y : str
Variable names from the processed case data input,
i.e. the link definition.
Returns
-------
df : pd.Dataframe (Quantipy convention, multiindexed)
'''
axis_labels = ['Question', 'Values']
df.index = pd.MultiIndex.from_product([[x], df.index], names=axis_labels)
if y is None:
df.columns = pd.MultiIndex.from_product([[x], df.columns], names=axis_labels)
elif y == '@':
df.columns = pd.MultiIndex.from_product([[x], '@'], names=axis_labels)
else:
df.columns = pd.MultiIndex.from_product([[y], df.columns], names=axis_labels)
return df
示例11: set_qp_multiindex
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def set_qp_multiindex(df, x, y):
'''
Takes a pd.DataFrames and applies Quantipy's Question/Values
layout to it by creating a multiindex on both axes.
Parameters
----------
df : pd.DataFrame
x, y : str
Variable names from the processed case data input,
i.e. the link definition.
Returns
-------
df : pd.Dataframe (Quantipy convention, multiindexed)
'''
axis_labels = ['Question', 'Values']
df.index = pd.MultiIndex.from_product([[x], df.index], names=axis_labels)
if y is None:
df.columns = pd.MultiIndex.from_product([[x], df.columns], names=axis_labels)
elif y == '@':
df.columns = pd.MultiIndex.from_product([[x], df.columns], names=axis_labels)
else:
df.columns = pd.MultiIndex.from_product([[y], df.columns], names=axis_labels)
return df
示例12: get_forecast_diversification_multiplier
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_forecast_diversification_multiplier(self, instrument_code):
"""
Get the f.d.m from the previous module
KEY INPUT
:param instrument_code:
:type str:
:returns: dict of Tx1 pd.DataFrames
"""
return self.parent.combForecast.get_forecast_diversification_multiplier(
instrument_code)
示例13: get_daily_price
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_daily_price(self, instrument_code):
"""
Get the instrument price from rawdata
Cached as data isn't cached
:param instrument_code:
:type str:
:returns: Tx1 pd.DataFrames
"""
return self.parent.data.daily_prices(instrument_code)
示例14: get_capped_forecast
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_capped_forecast(self, instrument_code, rule_variation_name):
"""
Get the capped forecast from the previous module
KEY INPUT
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: dict of Tx1 pd.DataFrames; keynames rule_variation_name
>>> from systems.tests.testdata import get_test_object_futures_with_rules_and_capping
>>> from systems.basesystem import System
>>> (fcs, rules, rawdata, data, config)=get_test_object_futures_with_rules_and_capping()
>>> system=System([rawdata, rules, fcs, ForecastCombineFixed()], data, config)
>>> system.combForecast.get_capped_forecast("EDOLLAR","ewmac8").tail(2)
ewmac8
2015-12-10 -0.190583
2015-12-11 0.871231
"""
return self.parent.forecastScaleCap.get_capped_forecast(
instrument_code, rule_variation_name)
示例15: get_all_forecasts
# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import DataFrames [as 別名]
def get_all_forecasts(self, instrument_code, rule_variation_list=None):
"""
Returns a data frame of forecasts for a particular instrument
KEY INPUT
:param instrument_code:
:type str:
:param rule_variation_list:
:type list: list of str to get forecasts for, if None uses get_trading_rule_list
:returns: TxN pd.DataFrames; columns rule_variation_name
>>> from systems.tests.testdata import get_test_object_futures_with_rules_and_capping
>>> from systems.basesystem import System
>>> (fcs, rules, rawdata, data, config)=get_test_object_futures_with_rules_and_capping()
>>> system1=System([rawdata, rules, fcs, ForecastCombineFixed()], data, config)
>>> system1.combForecast.get_all_forecasts("EDOLLAR",["ewmac8"]).tail(2)
ewmac8
2015-12-10 -0.190583
2015-12-11 0.871231
>>>
>>> system2=System([rawdata, rules, fcs, ForecastCombineFixed()], data, config)
>>> system2.combForecast.get_all_forecasts("EDOLLAR").tail(2)
ewmac16 ewmac8
2015-12-10 3.134462 -0.190583
2015-12-11 3.606243 0.871231
"""
if rule_variation_list is None:
rule_variation_list = self.get_trading_rule_list(
instrument_code)
forecasts = self.get_forecasts_given_rule_list(instrument_code, rule_variation_list)
return forecasts